首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A reduced dimensionality model is used to study the relaxation of highly vibrationally excited O(2)(X (3)Sigma(g) (-),v>/=20) in collisions with O(2)(X (3)Sigma(g) (-),v=0). Spin-orbit coupled potential energy surfaces are employed to incorporate the vibrational-to-electronic energy transfer mechanism involving the O(2)(a (1)Delta(g)) and O(2)(b (1)Sigma(g) (+)) excited states. The transition probabilities obtained show a sharp increase for v>/=26 providing the first direct evidence of the important role played by the electronic energy transfer processes in the depletion of O(2)(X (3)Sigma(g) (-),v>/=26).  相似文献   

2.
This article describes an ab initio investigation on the potential surfaces for one of the simplest hydrogen atom abstraction reactions, that is, HO + H2O <--> H2O + OH. In accord with the findings in the previously reported theoretical investigations, two types of the hydrogen-bonding complexes [HOH--OH] and [H2O--HO] were located on the potential energy surface. The water molecule acts as a hydrogen donor in the [HOH--OH] complex, while the OH radical acts as a hydrogen donor in the [H2O--HO] complex. The energy evaluations at the MP2(FC) basis set limit, as well as those through the CBS-APNO procedure, have provided estimates for enthalpies of association for these complexes at 298 K as -2.1 approximately -2.3 and -4.1 approximately -4.3 kcal/mol, respectively. The IRC calculations have suggested that the [H2O--HO] complex should be located along the reaction coordinate for the hydrogen abstraction. Our best estimate for the classical barrier height for the hydrogen abstraction is 7.8 kcal/mol, which was obtained from the CBS-APNO energy evaluations. After fitting the CBS-APNO potential energy curve to a symmetrical Eckart function, the rate constants were calculated by using the transition state theory including the tunneling correction. Our estimates for the Arrhenius parameters in the temperature region from 300 to 420 K show quite reasonable agreement with the experimentally derived values.  相似文献   

3.
The La + O and La + O 2 chemiionization reactions have been investigated with quantum chemical methods. For La + O 2(X (3)Sigma g) and La + O 2(a (1)Delta g), the chemiionization reaction La + O 2 --> LaO 2 (+) + e (-) has been shown to be endothermic and does not contribute to the experimental chemielectron spectra. For the La + O 2(X (3)Sigma g) reaction conditions, chemielectrons are produced by La + O 2 --> LaO + O, followed by La + O --> LaO (+) + e (-). This is supported by the same chemielectron band, arising from La + O --> LaO (+) + e (-), being observed from both the La + O( (3)P) and La + O 2(X (3)Sigma g) reaction conditions. For La + O 2(a (1)Delta g), a chemielectron band with higher electron kinetic energy than that obtained from La + O 2(X (3)Sigma g) is observed. This is attributed to production of O( (1)D) from the reaction La + O 2(a (1)Delta g) --> LaO + O( (1)D), followed by chemiionization via the reaction La + O( (1)D) --> LaO (+) + e (-). Potential energy curves are computed for a number of states of LaO, LaO* and LaO (+) to establish mechanisms for the observed La + O --> LaO (+) + e (-) chemiionization reactions.  相似文献   

4.
The gas-phase, ion molecule reaction between C3O2+. and C3O2 has been studied by both double-focusing and ion trap mass spectrometry, rationalized by the formation of a dimeric, odd electron cation [C6O4]+. which decomposes extensively through sequential CO losses giving rise to [C5O3]+. and [C4O2]+. ions. The thermodynamics of this process have been investigated by means of ab initio calculation performed on the above species using different basis sets (STO-3G, 3-21G and 6-31G*).  相似文献   

5.
Explosions occur when O3 and H2CO are mixed in a fresh vessel, even in the presence of several hundred torr of N2 or O2. However, in an aged vessel the reaction is well behaved. The reaction between O3 and H2CO was studied at room temperature in an aged vessel in the presence of about 400 torr of either N2 or O2. The initial rate of O3 decay in the presence of N2 is about 103 times faster than in the presence of O2, and very small amounts of O2 quickly reduce the initial rate of O3 decay in the N2 case. A chain mechanism is postulated to account for the results in which chain initiation can occur both by thermal decomposition of O3, followed by reaction of O(3P) with H2CO to produce HO and HCO, as well as by which may occur both homogeneously and heterogeneously. The rate coefficient k1 ? 2.1 × 10?24 cm3/molec · sec represents an upper limit (to within a factor of 2 uncertainty) to the direct gas-phase reaction between O3 and H2CO.  相似文献   

6.
Selenium and arsenic reactions believed to take place in the flue gases of coal combustion facilities were investigated. Prior theoretical work involving various As and Se species was completed using DFT and a broad range of ab initio methods. Building upon that work, the present study is a determination of the kinetic and thermodynamic parameters of the reactions, Se + O2 --> SeO + O and As + HCl --> AsCl + H at the CCSD/RCEP28VDZ and QCISD(T)/6-311++G(3df,3pd) levels of theory, respectively. Transition state theory was used in determining the kinetic rate constants along with collision theory as a means of comparison. The calculated K(eq) values are compared to experimental data, where available.  相似文献   

7.
A high-pressure turbulent flow reactor coupled with a chemical ionization mass spectrometer was used to investigate the minor channel (1b) producing nitric acid, HNO3, in the HO2 + NO reaction for which only one channel (1a) is known so far: HO2 + NO --> OH + NO2 (1a), HO2 + NO --> HNO3 (1b). The reaction has been investigated in the temperature range 223-298 K at a pressure of 200 Torr of N2 carrier gas. The influence of water vapor has been studied at 298 K. The branching ratio, k1b/k1a, was found to increase from (0.18(+0.04/-0.06))% at 298 K to (0.87(+0.05/-0.08))% at 223 K, corresponding to k1b = (1.6 +/- 0.5) x 10(-14) and (10.4 +/- 1.7) x 10(-14) cm3 molecule(-1) s(-1), respectively at 298 and 223 K. The data could be fitted by the Arrhenius expression k1b = 6.4 x 10(-17) exp((1644 +/- 76)/T) cm3 molecule(-1) s(-1) at T = 223-298 K. The yield of HNO3 was found to increase in the presence of water vapor (by 90% at about 3 Torr of H2O). Implications of the obtained results for atmospheric radicals chemistry and chemical amplifiers used to measure peroxy radicals are discussed. The results show in particular that reaction 1b can be a significant loss process for the HO(x) (OH, HO2) radicals in the upper troposphere.  相似文献   

8.
Intermediate diradicals which occur in the Paterno-Büchi photocycloaddition and in the Norrish type I photoreactions have been calculated taking into account the spin-orbit coupling (SOC) between the singlet (S) and triplet (T) states. Reaction paths for the photocycloaddition of formaldehyde to ethene and the diradical products of the -cleavage of cyclohexanone have been optimized by the MNDO CI method for a number of different singlet and triplet states. SOC integrals are calculated by an effective one-electron approximation. Intermediate diradicals in the Paterno-Büchi reaction and the SOC effects are also studied ab initio with CAS SCF geometry optimization in a TZV basis set. Both methods predict a large SOC matrix element between the S and T states in the course of the C-C attack, while the SOC integral is two orders of magnitude smaller for the diradical produced in the C-O attack. In the Norrish type I photoreaction the oxygen atom also produces some nonzero contribution to the SOC integral which governs intersystem crossing in a ·C-C· diradical. For the diradicals produced by the -cleavage of cyclohexanone a vibronic interaction is responsible for the SOC mixing between the lowest S and T states. The importance of one-center versus two-center SOC contributions in diradicals is briefly discussed.  相似文献   

9.
Upper limits of 4×10−20 and 7×10−20 cm3 molecule−1 s−1 were established for the gas-phase reactions of H2O2 with O3 and NO, respectively. These reactions are too slow to explain features observed in the atmospheric vertical profile of H2O2. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet: 30: 707–709, 1998  相似文献   

10.
Various highly accurate ab initio composite methods of Gaussian-n (G1, G2, G3), their variations (G2(MP2), G3(MP2), G3//B3LYP, G3(MP2)//B3LYP), and complete basis set (CBS-Q, CBS-Q//B3LYP) series of models were applied to compute reaction enthalpies of the ground-state reaction of CO2 with Mg. All model chemistries predict highly endothermic reactions, with DeltaH(298) = 63.6-69.7 kcal x mol(-1). The difference between the calculated reaction enthalpies and the experimental value, evaluated with recommended experimental standard enthalpies of formation for products and reactants, is more than 20 kcal x mol(-1) for all methods. This difference originates in the incorrect experimental enthalpy of formation of gaseous MgO given in thermochemical databases. When the theoretical formation enthalpy for MgO calculated by a particular method is used, the deviation is reduced to 1.3 kcal x mol(-1). The performance of the methodologies used to calculate the heat of this particular reaction and the enthalpy of formation of MgO are discussed.  相似文献   

11.
In the paper the spin-orbit coupling in chelates with conjugated ligands has been studied theoretically. The proposed models were used for the calculation of the lifetime of the 32 electron-transfer triplet state of the complex ion Ru(phen) 3 +2 .  相似文献   

12.
We have studied the O + OH ↔ O2 + H reaction on Varandas's DMBE IV potential using a variety of statistical methods, all involving the RRKM assumption for the HO2* complex. Comparing our results using microcanonical variational transition‐state theory (μVT) with those using microcanonical/fixed‐J variational transition‐state theory (μVT‐J), we find that the effect of angular momentum conservation on the rate coefficient is imperceptible up to a temperature of about 700 K. Above 700 K angular momentum conservation increasingly reduces the rate coefficient, but only by approximately 21% even at 5000 K. Comparing our μVT‐J calculations with the quasi‐classical trajectory (QCT) results of Miller and Garrett [ 1 ], we confirm their conclusion that non‐RRKM dynamics of the HO2* complex reduces the rate coefficient by about a factor of 2 independent of temperature. Our calculations of k(c), the rate coefficient for HO2* formation from O + OH, are in excellent agreement with the QCT results of Miller and Garrett. Although the differences are not large, we find kCVT(c) > kμVT(c) > kμVT‐J(c) > kQCT(c), where CVT stands for canonical variational transition‐state theory. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 753–756, 1999  相似文献   

13.
For the experimental determination of the equilibrium constant of the reaction CH3 + O2 ? CH3O2 (1), the process of methane oxidation has been studied over the temperature range of 706–786 K. The concentration of CH3O2 has been measured by the radical freezing method, and that of CH3 from the rate of accumulation of ethane, assuming that C2H6 is produced by the reaction CH3 + CH3 → C2H6 (2). The equilibrium constant of reaction (1) has been obtained at four temperatures. For the heat of the reaction the value Δ?H298 = -32.2 ± 1.5 kcal/mol is recommended.  相似文献   

14.
The state-to-state dynamics of the H+D2 reaction is studied by the reactant-product decoupling method using the double many-body expansion potential energy surface. Two approaches are compared: one uses only the lowest adiabatic sheet while the other employs both coupled diabatic sheets. Rotational distributions for the reaction H+D2 (upsilon = 0, j = 0)-->HD(upsilon' = 3, j')+D are obtained at eight different collision energies between 1.49 and 1.85 eV; no significant difference are found between the two approaches. Initial state-selected total reaction probabilities and integral cross sections are also given for energies ranging from 0.25 up to 2.0 eV with extremely small differences being observed between the two sets of results, thus showing that the nonadiabatic effects in the title reaction are negligible at least for small energies below 2.0 eV.  相似文献   

15.
The importance of vibrational-to-electronic (V-E) energy transfer mediated by spin-orbit coupling in the collisional removal of O2(X 3Sigmag-,upsilon>or=26) by O2 has been reported in a recent communication [F. Dayou, J. Campos-Martinez, M. I. Hernandez, and R. Hernandez-Lamoneda, J. Chem. Phys. 120, 10355 (2004)]. The present work provides details on the electronic properties of the dimer (O2)2 relevant to the self-relaxation of O2(X 3Sigmag-,upsilon>0) where V-E energy transfer involving the O2(a 1Deltag) and O2(b 1Sigmag+) states is incorporated. Two-dimensional electronic structure calculations based on highly correlated ab initio methods have been carried out for the potential-energy and spin-orbit coupling surfaces associated with the ground singlet and two low-lying excited triplet states of the dimer dissociating into O2(X 3Sigmag-)+O2(X 3Sigmag-), O2(a 1Deltag)+O2(X 3Sigmag-), and O2(b 1Sigmag+)+O2(X 3Sigmag-). The resulting interaction potentials for the two excited triplet states display very similar features along the intermolecular separation, whereas differences arise with the ground singlet state for which the spin-exchange interaction produces a shorter equilibrium distance and higher binding energy. The vibrational dependence is qualitatively similar for the three studied interaction potentials. The spin-orbit coupling between the ground and second excited states is already nonzero in the O2+O2 dissociation limit and keeps its asymptotic value up to relatively short intermolecular separations, where the coupling increases for intramolecular distances close to the equilibrium of the isolated diatom. On the other hand, state mixing between the two excited triplet states leads to a noticeable collision-induced spin-orbit coupling between the ground and first excited states. The results are discussed in terms of specific features of the dimer electronic structure (including a simple four-electron model) and compared with existing theoretical and experimental data. This work gives theoretical insight into the origin of electronic energy-transfer mechanisms in O2+O2 collisions.  相似文献   

16.
《Chemical physics》1987,111(1):47-53
The 2IIu state of Br+2 shows an unusually large difference between the vibrational frequencies of its two spin-orbit components. It is shown that this can be understood from the combined effects of correlation and spin-orbit interaction, which is largely due to the partial localisation of the hole in the ion. The same mechanism can be held responsible for vibrational and rotational anomalies in the corresponding state of Cl+2 and F+2.  相似文献   

17.
Quasi-classical trajectory calculations have been performed on the H + O2 system. Significant reaction probabilities are obtained when the initial energy is in rotation or vibration, or a combination of the two, but not when the initial energy is in translation. The opacity function shows a bimodal dependence on the impact parameter, with a small peak at 0.9 Å < b < 1.5 Å and a very prominent peak at 2.5 Å < b < 3.3 Å. The product scattering angles and product energy distributions also depend on b and to a limited extent on the initial energy distribution. The observations can be largely interpreted in terms of the nature of the motion on the potential energy surface, while the effects of rotational energy on the reaction follow qualitatively from statistical phase-space theory.  相似文献   

18.

To explore the mechanisms for Ni-based oxide-catalyzed oxidative dehydrogenation (ODH) reactions, we investigate the reactions of C2H6 with NiO+ using density functional calculations. Two possible reaction pathways are identified, which lead to the formation of ethanol (path 1), ethylene and water (path 2). The proportion of products is discussed by Curtin-Hammett principle, and the result shows that path 2 is the main reaction channel and the water and ethylene are the main products. In order to get a deeper understanding of the titled reaction, numerous means of analysis methods including the atoms in molecules (AIM), electron localization function (ELF), natural bond orbital (NBO), and density of states (DOS) are used to study the properties of the chemical bonding evolution along the reaction pathways.

  相似文献   

19.
Quasi-classical trajectory calculations for the Si(3P)+O2(X 3Sigmag-)-->SiO(X 1Sigma+)+O(1D) reaction have been carried out using the analytical ground 1A' potential energy surface (PES) recently reported by Dayou and Spielfiedel [J. Chem. Phys. 119, 4237 (2003)]. The reaction has been studied for a wide range of collision energies (0.005-0.6 eV) with O2 in its ground rovibrational state. The barrierless PES leads to a decrease of the total reaction cross section with increasing collision energy. It has been brought to evidence that the reaction proceeds through different reaction mechanisms whose contributions to reactivity are highly dependent on the collision energy range. At low collision energy an abstraction mechanism occurs involving the collinear SiOO potential well. The associated short-lived intermediate complex leads to an inverted vibrational distribution peaked at v'=3 and low rotational excitation of SiO(v',j') with a preferentially backward scattering. At higher energies the reaction proceeds mainly through an insertion mechanism involving the bent and linear OSiO deep potential wells and associated long-lived intermediate complexes, giving rise to nearly statistical energy disposals into the product modes and a forward-backward symmetry of the differential cross section.  相似文献   

20.
The title reaction forms electronically excited HSO(Ã2A′) directly, with considerable vibrational and rotational excitation as well. The internal excitation of the HSO fragment is the maximum possible consistent with the concurrent formation of an O2(1Δg) molecule as the other reaction product. The observed vibrational excitation peaks in the υ′= 2 level of the υ3 mode. No evidence about possible excitation of the other vibrational modes of HSO could be obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号