首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
A series of six organotin(IV) carboxylates [Me2SnL2] (1), [n-Bu2SnL2] (2), [n-Oct2SnL2] (3), [Me3SnL] (4), n-Bu3SnL (5) and [Ph3SnL] (6), where L = 3-(4-cyanophenyl) acrylic acid have been synthesized and characterized by elemental analysis, FT-IR and NMR (1H, 13C). The complex (4) was also analyzed by single crystal X-ray analysis which showed distorted trigonal bipyramidal geometry with polymeric bridging behavior. The complexes 16 were screened for antimicrobial activities and cytotoxicity. The results showed significant activity with few exceptions. The catalytic activity of complexes was assessed in transesterification reaction of Brassica campestris oil (triglycerides) to produce biodiesel (fatty acid methyl esters). The results showed that triorganotin(IV) complexes exhibited good catalytic activity than their di-analogues.  相似文献   

2.
A series of new benzo-15-crown-5 derivatives (16) containing formyl and imine groups were prepared. New formyl crown ethers (1 and 2) were prepared by reaction of 4′,5′-bis(bromomethyl)benzo-15-crown-5 with 2-hydroxy-3-methoxybenzaldehyde (o-vanillin) and 2-hydroxy-5-methoxybenzaldehyde in the presence of NaOH. New Schiff bases (36) were synthesized by the condensation of corresponding aldehydes with 1,3-diaminopropane and 1,4-diaminobutane. Sodium and potassium complexes (1a6a and 1b6b) of the crown compounds forming crystalline complexes of 1:1 (Na+:ligand) and 1:2 (K+:ligand) stoichiometries were also synthesized. The structures of the aldehydes 1 and 2, imines 36 and complexes (1a3a and 1b3b) were confirmed on the basis of elemental analyses, IR, 1H- and 13C-NMR, and mass spectroscopy.  相似文献   

3.
New benzo-15-crown-5 derivatives containing nitro, amine and imine groups were prepared. Nitro compound (1) was prepared after the reaction?4′,5′-bis(bromethyl)benzo-15-crown-5 and o-nitrophenol in the presence of NaOH. After reduction process by using hydrazine hydrate and Pd/C amine compound (2) was formed. New crown ether imine compounds (35) were synthesized by the condensation of corresponding crown ether diamine (2) with salicylaldehyde derivatives. Sodium complexes of the crown compounds (1a5a) form crystalline 1:1 (Na+: ligand) complexes with sodium perchlorate. Nickel(II) complexes (3b5b) with 1:1 (Ni2+:ligand) stoichiometries were also been synthesized from the Schiff bases (35). The results indicated that the Schiff base ligands coordinated through the azomethine nitrogen and phenolic oxygen. The extraction ability of compounds (1, 3, 4 and 5) were also evaluated in chloroform by using several alkali and transition metal picrates such as Li+, Na+, K+, Cr3+, Mn2+, Ni2+, Cu2+, Zn2+ and Pb2+.  相似文献   

4.
Two isomeric NS2-macrocycles incorporating a xylyl group at ortho (o -L) and meta (m -L) positions were employed and their copper complexes (1?C5) were prepared and structurally characterized. The copper(II) nitrate complexes [Cu(L)(NO3)2] (1: L = o -L, 2: L = m -L) for both ligands were isolated. In each case, the copper center is five-coordinated with a distorted square pyramidal geometry. Despite the overall geometrical similarity, 1 and 2 show the different ligand conformation due to the discriminated packing pattern. Reaction of o -L with copper(II) perchlorate afforded complex 3 containing two independent complex cations [Cu(o -L)(H2O)(DMF)(ClO4)]+ and [Cu(o -L)(H2O)(DMF)]2+; the coordination geometry of the former is a distorted octahedron while the latter shows a distorted square pyramidal arrangement. In the reactions of copper(I) halides (I or Br), o -L gave a mononuclear complex [Cu(o-L)I] (4) with a distorted tetrahedral geometry, while m -L afforded a unique exodentate 2:1 (ligand-to-metal) complex [trans-Br2Cu(m-L)2] (5) adopting a trans-type square-planar arrangement.  相似文献   

5.
A series of new tin(IV) complexes based on 2-hydroxy-3,6-di-tert-butyl-para-benzoquinone (LH) of the general formula L2SnR2 (R = Me (I), Et (II), Bu n (III), Ph (IV)) and LSnMe3 (V) were synthesized. The obtained compounds were characterized by IR and 1H, 13C and 119Sn NMR spectroscopy and elemental analysis. The X-ray diffraction analysis was carried out for complexes L2Sn(Bu n )2 (III) and LSnMe3 (V). The low-frequency region of the IR spectra, which has not earlier been studied in detail, was interpreted for compounds I–V and previously described complex LSnPh3 (VI). The electrochemical properties of LH and related tin complexes I–VI were studied. The nature of the hydrocarbon groups at the metal atom affects the stability of the intermediates formed in the electrochemical reactions.  相似文献   

6.
Three copper complexes {[Cu2(L1)2]·I3} n (1), [Cu(L2)2] (2), and [Cu2I2(L3)2(MBI)2] (3) (MBI = 2-mercaptobenzimidazole, L1 = N-(benzothiazol-2-yl)acetamidine anion, L2 = N-(thiazol-2-yl) acetamidine anion, L3 = 3-methyl-[1,2,4]thiadiazolo[4,5-a]benzimidazole) have been synthesized solvothermally by the reactions of CuI with 2-benzothiazolamine, 2-aminothiazole and 2-mercaptobenzimidazole (MBI), respectively, in acetonitrile. In situ C–N (or C–S) cross-coupling ligand reactions were observed in all three complexes, and hypothetical reaction mechanisms are proposed for the formation of the ligands and their complexes. The single-crystal X-ray structural analysis reveals that both the Cu(II) and Cu(I) atoms are located in pseudo-tetrahedral environments in complex 1, and L1 acts as a double bidentate ligand which coordinates with the Cu(I) and Cu(II) atoms to form a 1D coordination polymer. Unlike complex 1, the Cu(II) atom in complex 2 is in a square planar geometry, coordinated by two L2 ligands with relatively small steric hindrance. In complex 3, the Cu(I) atoms have a distorted tetrahedral geometry, being coordinated by one nitrogen atom from L3, two sulfur atoms of MBI ligands, and one iodide. The sulfur atoms from MBI ligands bridge two Cu(I) atoms to form a binuclear complex. All three complexes exhibit relatively high thermal stabilities. Complex 1 displays intense fluorescence emission at 382 nm and complex 3 displays two intense fluorescence emissions at 401 and 555 nm.  相似文献   

7.
The interaction of the enantiopure (R)- and (S)-1-phenyl-N,N-bis(pyridine-3- ylmethyl)ethanamine ligands, R-L 1 and S-L 1 , with copper(II) chloride followed by addition of hexafluorophosphate resulted in the isolation of the corresponding enantiomeric complexes [Cu(R-L 1 )Cl](PF6) (1), [Cu(S-L 1 )Cl](PF6) (2) and [Cu(S-L 1 )Cl](PF6)??0.5Et2O (3), in which dimerization occurs through two long Cu??????Cl interactions, the ??-chloro bridges being thus strongly asymmetric. The organic ligand is bound to the metal centre via its N3-donor dipyridylmethylamine fragment in a planar fashion, such that each copper centre is in a square planar environment (or distorted square pyramidal with a long axial bond length if the additional interaction is considered). When R,S-L 1 was employed in a parallel synthesis, the similar racemic complex [Cu(R,S-L 1 )Cl](PF6)??0.5MeOH (4) was obtained, in which the L 1 ligands in each dimeric unit have opposite hands. In contrast to the complexes of L 1 , the reaction of Cu(II) chloride with the related ligand, (R)-1-cyclohexyl-N,N-bis(pyridine-3-ylmethyl)ethanamine (R-L 2 ), yielded the mononuclear complex [Cu(R,S-L 2 )Cl2] (5), displaying a distorted square pyramidal coordination geometry. The structure of this product along with its corresponding circular dichroism spectrum revealed that racemisation of the starting R-L 2 ligand has occurred under the relatively mild (basic) conditions employed for the synthesis. A temperature-dependent magnetic studies of the complexes 1, 2 and 5 indicate that a week ferromagnetic interaction is operative in each dicopper core in 1 and 2 with 2J?=?1.2?cm?1. On the other hand, a week antiferromagnetic intermolecular interaction is operative for 5.  相似文献   

8.
Four new mononuclear triazido-cobalt(III) complexes [Co(L 1/2/4 )(N3)3] and [Co(L 3 )(N3)3]·CH3CN where L 1  = [(2-pyridyl)-2-ethyl]-(2-pyridylmethyl)-N-methylamine, L 2  = [(2-pyridyl)-2-ethyl]-[6-methyl-(2-pyridylmethyl)]-N-methylamine, L 3  = [(2-pyridyl)-2-ethyl]-[3,5-dimethyl-4-methoxy-(2-pyridylmethyl)]-N-methylamine, and L 4  = [(2-pyridyl)-2-ethyl]-[3,4-dimethoxy-(2-pyridylmethyl)]-N-methylamine, respectively, were synthesized and structurally characterized. The four complexes were characterized by elemental microanalyses, IR and UV–VIS spectroscopy and X-ray single crystal crystallography. The complexes display two strong IR bands over the frequency region 2,020–2,050 cm?1 assigned for the asymmetric stretching frequency, νa(N3) of the coordinated azides indicating facial geometry. The molecular structure determinations of the complexes were in complete agreement with fac-[Co(L)(N3)3] conformation in distorted octahedral Co(III) environment.  相似文献   

9.
Three new Pd(II) complexes of Schiff base ligands, namely, [Pd4(L1)4] (1), [Pd2(L2)2Cl2] (2) and [Pd(L3)2Cl2] (3) [HL 1 ?=?N-(benzylidene)-2-aminophenol; L 2 ?=?N-(2,4-dichlorobenzylidene)-2,6-diethylbenzenamine, L 3 ?=?4-(2,4-dichlorobenzylide-neamino)phenol] have been synthesized using solvothermal methods and characterized by elemental analysis, spectroscopy and single crystal X-ray diffraction. The crystal structures of the free ligands were also determined. The ??-oxygen-bridged tetranuclear cyclometallated Pd(II) complex (1) contains four nearly planar units, in which PdII is four-coordinate. Complex 2 is a ??-chloro-bridged dinuclear cyclometallated Pd(II) complex, whereas complex 3 is mononuclear. The Heck reactions of bromobenzene with acrylic acid catalyzed by complexes 1?C3 have also been studied.  相似文献   

10.
Density functional theory (DFT) calculations have been carried out on four novel dicoordinated lead compounds PbL2 where L is an N-heterocyclic ylidene or a five-membered cyclic ylidene (1Pb, 2Pb, 4Pb, 5Pb) and for a plumbylene-coordinated carbone CL2 (3Pb). The theoretically predicted equilibrium geometries and the first and second proton affinities of 1Pb?C5Pb are reported. Geometry optimizations have also been carried out for the complexes with one and two BH3 ligands 1Pb(BH 3 )?C5Pb(BH 3 ) and 1Pb(BH 3 ) 2 ?C5Pb(BH 3 ) 2 , and for the transition metal complexes 1PbW(CO) 5 ?C5PbW(CO) 5 and 1PbNi(CO) 3 ?C5PbNi(CO) 3 . The results suggest that the molecules 1Pb, 2Pb and 4Pb possess properties which identify them as divalent Pb(0) compounds (plumbylones). This comes to the fore by the theoretically predicted second PAs which are very large for a lead compound and (for 1Pb and 4Pb) by the BDE of the second BH3 ligand. Compound 3Pb should be considered as a plumbylene-coordinated divalent C(0) compound (carbone) which has a very high second PA of 195.1?kcal/mol. The geometry optimization of 5Pb gives an equilibrium structure which identifies the molecules as divalent Pb(II) compound, i.e., as a plumbylene.  相似文献   

11.
The synthesis of a series of chiral Pd(L)PyBr2 (3a3e) and Pd(L)PyCl2 (4d and 4e) complexes from l-phenylalanine is presented (L = (S)-3-allyl-4-benzyl-1-(2,6-diisopropylphenyl)-imidazolin-2-ylidene (a), (S)-4-benzyl-1-(2,6-diisopropylphenyl)-3-(naphthalen-2-ylmethyl)imidazolin-2-ylidene (b), (S)-4-benzyl-3-(biphenyl-4-ylmethyl)-1-(2,6-diisopropylphenyl)imidazolin-2-ylidene (c), (S)-4-benzyl-1-(2,6-diisopropylphenyl)-3-(naphthalen-1-ylmethyl)imidazolin-2-ylidene (d) or (S)-4-benzyl-1-(2,6-diisopropylphenyl)-3-(2,4,6-trimethylbenzyl)imidazolin-2-ylidene (e). The complexes were characterized by physicochemical and spectroscopic methods, and the X-ray crystal structures of 3a3c and 4d are reported. In each case, there is a slightly distorted square-planar geometry around palladium, which is surrounded by imidazolylidene, two trans halide ligands and a pyridine ligand. There are π–π stacking interactions in the crystal structures of these complexes. Complex 3a showed good catalytic activity in the Cu-free Sonogashira coupling reaction under aerobic conditions.  相似文献   

12.
金国新 《高分子科学》2013,31(5):760-768
A series of half-sandwich group IV metal complexes with tridentate monoanionic phenoxy-imine arylsulfide [O NS] ligand [2-Bu t 4-Me-6-((2-(SC 6 H 5)C 6 H 4 N = CHC 6 H 2 O)](La) and dianionic phenoxy-amine arylsulfide [O N S] ligand [2-Bu t 4-Me-6-((2-(SC 6 H 5)C 6 H 4 N-CH 2 C 6 H 2 O)] 2(Lb) have been synthesized and characterized.Lb was obtained easily in high yield by reduction of ligand La with excess LiAlH 4 in cool diethyl ether.Half-sandwich Group IV metal complexes CpTi[O NS]Cl 2(1a),CpZr[O NS]Cl 2(1b),CpTi[O N S]Cl(2a),CpZr[O N S]Cl(2b) and Cp * Zr[O N S]Cl(2c) were synthesized by the reactions of La and Lb with CpTiCl 3,CpZrCl 3 and Cp * ZrCl 3,and characterized by IR,1 H-NMR,13 C-NMR and elemental analysis.In addition,an X-ray structure analysis was performed on ligand Lb.The title Group IV half-sandwich bearing tridentate [O,N,S] ligands show good catalytic activities for ethylene polymerization in the presence of methylaluminoxane(MAO) as co-catalyst up to 1.58 × 10 7 g-PE.mol-Zr 1.h 1.The good catalytic activities can be maintained even at high temperatures such as 100 ℃ exhibiting the excellent thermal stability for these half-sandwich metal pre-catalysts.  相似文献   

13.
Two new coordination polymers, [Pb(IDPT)2(NO3)2] (I) and [Mn(IDPT)(SO4)(H2O)2] (II) (IDPT = imidazo[4,5-f][1,10]phenanthroline), were synthesized by hydrothermal method and characterized by elemental analysis and single-crystal X-ray diffraction technique. The results reveal that the complex I belongs to monoclinic crystal system, space group C2/c and complex II belongs to monoclinic crystal system, P21/c space group. The cell parameters are: a = 19.1970(13), b = 7.3875(5), c = 17.3825(12) Å, β = 100.47(10)°, V = 2424.0(3) Å3, Z = 4, F(000) = 1488 for I; a = 10.9135(6), b = 7.0230(4), c = 19.7034(10) Å, β = 99.32(10)°, V = 1490.25(14) Å3, Z = 4, F(000) = 828 for II. In the structure of complex I, the metal center Pb(II) is six-coordinated, displays an octahedral geometry. Each molecule is further connected with neighboring one via π-π interactions into 1D chain. In complex II, Mn(II) is six-coordinated to form a distorted octahedral geometry. Compound II displays 1D supramolecular chain formed through hydrogen bonds. Additionally, the fluorescent properties for the complexes were investigated. Complexes I and II exhibit strong photoluminescence with emission maximum at 583 and 529 nm at room temperature.  相似文献   

14.
A new Schiff base complex [Ni(H2L1)(NO3)](NO3) (1) (H2L1 = 3-[N,N′-bis-2-(5-bromo-3-(morpholinomethyl) salicylideneamino) ethyl amine]) was synthesized from reaction of the ditopic ligand H2L1 with Ni(NO3)2 in anhydrous MeOH. Complex 1 is stable in the solid state, but prone to hydrolysis. Recrystallization of 1 from wet MeOH led to the isolation of a novel unsymmetrical complex [Ni(HL2)(NO3)](NO3) (2) (HL2 = 2-[(2-(2-aminoethylamino) ethylimino) ethyl)-5-bromo-3-(morpholino methyl) salicylidene amine]). X-ray single-crystal analysis of complex 2 showed that complex 1 had undergone partial decomposition of one imine bond. In contrast, the Schiff base complex [Ni(HL3)](NO3) (3) (H2L3 = N,N′-bis(5-methyl-salicylidene) diethylenetriamine) was stable in wet methanol, and the single-crystal structure of 3 showed that the Ni(II) center was coordinated in an unsymmetrical square planar geometry. Density functional theory calculations were performed in order to obtain a geometry-optimized model of complex 1, in which the Ni(II) center was coordinated in a similar manner as that in complex 3. The thermodynamic parameters were calculated, in order to rationalize the difference in hydrolytic reactivity between complexes 1 and 3.  相似文献   

15.
A new azacrown bis-macrocycle (5) and its mono–cyclic analogue (7) were synthesized and characterized by FT-IR, 1H NMR, 13C NMR, DEPT 13C NMR, MS, and elemental analysis. The reaction with copper(II) nitrate yielded the corresponding complexes, formulated as Cu(5)(NO3)2·3H2O (8), and Cu(7)(NO3)2·2.5H2O (9). Also the stoichiometries of the complexes were determined in alcoholic solution and the results show that for both complexes the ratio of ligand to metal was 1:1 in methanol. The redox behavior of both complexes has been studied by cyclic voltammetry in DMF. Cyclic voltamogram of 8 shows quasi-reversible CuII/CuI redox couple whereas 9 shows a reversible CuII/CuI redox couple. Mono- and bis-macrocycle copper(II) complexes (8 and 9 respectively) cleaved plasmid pGS2 DNA by using an oxidative mechanism with 3- mercaptopropionic acid (MPA) as the reductant under aerobic conditions. The bis-macrocycle copper(II) complex 8 showed higher cleavage efficiency than their mono-macrocycle analogue 9 at the same Cu2+ concentration.  相似文献   

16.
Two new complexes [Zn(Hpda)(Bth-6)]2n (I) and [Zn(Hpda)2] · 2(H-Bpe) (II) (HpdaH2 = 4-hydroxypyridine-2,6-dicarboxylic acid, Bth-6 = 1,6-bis(1,2,4-triazol-1-yl)hexane, Bpe = 1,2-bi(4-pyridyl)ethene) have been synthesized and characterized structurally. Their X-ray crystal structures show that the two complexes belong to a monoclinic system; space group P21/n with a = 11.9328(12), b = 20.975(2), c = 17.1544(17) Å; β = 91.406(2)°, Z = 4 for I; space group P21/c with a = 12.7150(19), b = 14.000(2), c = 22.171(3) Å; β = 96.481(2)°, Z = 4 for II. Compound I possesses a one-dimensional (1D) zigzag chain structure, each zinc(II) ion is five-coordinated with a distorted triangle bipyramid geometry. Compound II is discrete mononuclear species, in which the zinc(II) ion is six-coordinated with a distorted octahedral geometry. The [Zn(Hpda)2]2? units are connected one-dimensional chain by the intermolecular hydrogen bonds.  相似文献   

17.
Homobimetallic complexes with oxygen and sulphur donor ligand have been synthesized at room temperature under stirring conditions using R2SnCl2 (R?=?Me, n-Bu) and R3SnCl (R?=?Me, n-Bu, Ph) in 1:1 molar ratio. The synthesized complexes have been characterized by elemental analysis, IR and multinuclear NMR (1H, 13C) spectroscopy. These complexes have also been screened for their biological activities. IR data show that the ligand acts in a bidentate manner and exhibits trigonal bipyramidal geometry in solid state which is also confirmed by semi-empirical study. NMR data show that reported complexes exhibit tetrahedral geometry in solution. Results of antimicrobial screening activities indicated that complexes (6) and (7) are very effective antibacterial and antifungal agents, respectively, and they might indeed be a potential source of antimicrobial agents, while the complex (3) exhibits significant free radical scavenging ability with lower IC50 value of 99.47?±?1.2???g/mL. Results of cytotoxicity/haemolytic activity showed the significant value of % haemolysis for complex (7) (18.101?±?2.3), while complex (4) was found to be least cytotoxic (5.733?±?1.0). Only a few colonies are observed in mutagenicity testing by Ames test.  相似文献   

18.
A new ligand was prepared by reacting 3,5-dimethylaniline with succinic anhydride in glacial acetic acid at room temperature. A series of organotin(IV) carboxylates were prepared by reacting the ligand with R2SnCl2/R3SnCl (R?=?Me, Bu, Ph, Oct) in 1:2/1:1 molar ratio. The synthesized complexes were characterized by elemental analyses, FT-IR, multinuclear magnetic resonance (1H and 13C) and mass spectrometry. The structures of the ligand (HL) and complex (5) were determined by single crystal X-ray diffraction analysis. FT-IR data shows that the coordination takes place through both carboxylate oxygen atoms. NMR data confirm the tetrahedral geometry in solution. In the crystal structure of ligand (HL), centrosymmetrically related molecules are linked into dimers by N?CH??O hydrogen bonding interactions, while in complex (5) coordination around the tin atom is trigonal bipyramidal, with the carbon atoms of the methyl groups occupying the equatorial plane and the O atoms of symmetry-related ligands at the apices. Organotin(IV) complexes were also screened for their antibacterial and antifungal activities, and the results suggested that the synthesized complexes are better antimicrobial agents as compared to the free ligand.  相似文献   

19.
Two new cobalt(III) complexes of the hexadentate ligand [1,4-bis[o-(pyridine-2-carboxamidophenyl)]-1,4-dithiobutane] (H2bpctb) with N4S2 donor set atoms have been synthesized. A reaction of Co(CH3COO)2·4H2O with (H2bpctb) leads to the formation of [CoIII(bpctb)]PF6 (1) having a CoN2(pyridine)N′2(amide)S2(thioether) coordination by symmetric bpctb2? ligand. A similar reaction under slightly different conditions, however, gives [CoIII(L a )(L b )] (2), resulting from a C–S bond cleavage reaction triggered by an acetate ion as a base, having CoN2(pyridine)N′2(amide)S(thioether)S′(thiolate) coordination. These two Co(III) complexes have been characterized by elemental analyses and spectroscopic methods, and the crystal and molecular structures of [CoIII(bpctb)]PF6 (1) in the form of the solvate (1·MeOH·H2O) and of [CoIII(L a )(L b )] (2) have been determined by X-ray crystallography. The Co atoms of both complexes exhibit distorted octahedral geometry. The electrochemical investigation of [Co(bpctb)]PF6·MeOH·H2O (1·MeOH·H2O) and [CoIII(L a )(L b )] (2) by cyclic voltammetry reveals a reversible CoIII–CoII redox process at E 1/2 = ?0.32 V (ΔE p = 80 mV); for 1, and E 1/2 = ?0. 87 V (ΔE p = 70 mV) for 2.  相似文献   

20.
Two new bis(5,6-dimethybenzimidazole)-based CoII complexes, Co(pydca)(L)2·2H2O (1) and [Co(bdc)(L)] n (2) (L = 1,3-bis(5,6-dimethylbenzimidazol-1-yl)-2-propanol, H2pydca = pyridine-2,6-dicarboxylic acid, H2bdc = 1,4-benzenedicarboxylic acid) were synthesized and characterized by physicochemical, spectroscopic methods and single-crystal diffraction. The cobalt(II) centers display different environments with distorted square-pyramidal geometry in 1 and a perfect tetrahedral geometry in 2. Complex 1 is a mononuclear structure, which is further assembled into a 3D supramolecular network via strong hydrogen bonding as well as ππ interactions; while complex 2 possesses a 2D corrugated (4,4) network that is further formed into a (3,4,4)-connected network with (62.84)(63)2(64.82)2-3,4,4T25 topology due to classical hydrogen bonds. The fluorescence and catalytic performances of the two complexes for the degradation of methyl orange by sodium persulfate have been investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号