首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solid solutions between ferrimagnet Cu0.5Fe0.5Cr2S4 (T C = 347 K) and antiferromagnet Cu0.5Ga0.5Cr2S4 (T N = 31 K) have been synthesized, and their magnetic properties studied. Both compounds belong to the A 0.5 + A 0.5 3+ Cr2X4 group with the 1 : 1 order of A+ and A3+ ions in the tetrahedral spinel sites. Measurements on a SQUID magnetometer over wide ranges of fields (0.05?C40 kOe) and temperatures (5?C300 K) provided a deeper insight into the nature of magnetism and cation distribution in the studied samples.  相似文献   

2.
CuCr1.5Sb0.5S4 ? x Se x (x = 0, 0.5, 3.5, 4) metal chalcogenides with spinel structure have been synthesized for the first time. Unit cell parameters have been calculated and magnetic properties have been measured for the samples prepared. These samples are nonuniform antiferromagnets having Neel temperatures of T N = 21?C30 K.  相似文献   

3.
Strontium additions in (La1?x Sr x )1?y Mn0.5Ti0.5O3?δ (x?=?0.15–0.75, y?=?0–0.05) having a rhombohedrally distorted perovskite structure under oxidizing conditions lead to the unit cell volume contraction, whilst the total conductivity, thermal and chemical expansion, and steady-state oxygen permeation limited by surface exchange increase with increasing x. The oxygen partial pressure dependencies of the conductivity and Seebeck coefficient studied at 973–1223?K in the p(O2) range from 10?19 to 0.5?atm suggest a dominant role of electron hole hopping and relatively stable Mn3+ and Ti4+ states. Due to low oxygen nonstoichiometry essentially constant in oxidizing and moderately reducing environments and to strong coulombic interaction between Ti4+ cations and oxygen anions, the tracer diffusion coefficients measured by the 18O/16O isotopic exchange depth profile method with time-of-flight secondary-ion mass spectrometric analysis are lower compared to lanthanum–strontium manganites. The average thermal expansion coefficients determined by controlled-atmosphere dilatometry vary in the range 9.8–15.0?×?10?6?K?1 at 300–1370?K and oxygen pressures from 10?21 to 0.21?atm. The anodic overpotentials of porous La0.5Sr0.5Mn0.5Ti0.5O3?δ electrodes with Ce0.8Gd0.2O2-δ interlayers, applied onto LaGaO3-based solid electrolyte, are lower compared to (La0.75Sr0.25)0.95Cr0.5Mn0.5O3?δ when no metallic current-collecting layers are introduced. However, the polarization resistance is still high, ~2 Ω?×?cm2 in humidified 10?% H2–90?% N2 atmosphere at 1073?K, in correlation with relatively low electronic conduction and isotopic exchange rates. The presence of H2S traces in H2-containing gas mixtures did not result in detectable decomposition of the perovskite phases.  相似文献   

4.
Magnetic properties are studied and a magnetic phase diagram is constructed for (Cu0.5Ga0.5)1 ? x Fe x Cr2S4 solid solutions formed between chromium chalcogenide spinels (Cu0.5Ga0.5)Cr2S4 and FeCr2S4.  相似文献   

5.
Young’s modulus, strain–stress behavior, fracture strength, and fracture toughness of (0≤×≤1) materials have been investigated in the temperature range 20–1,000°C. Young’s moduli of and , measured by resonant ultrasound spectroscopy, were 130±1 and 133±3 GPa, respectively. The nonlinear stress–strain relationship observed by four-point bending at room temperature was inferred as a signature of ferroelastic behavior of the materials. Above the ferroelastic to paraelastic transition temperature, the materials showed elastic behavior, but due to high-temperature creep, a nonelastic respond reappeared above ∼800°C. The room temperature fracture strength measured by four-point bending was in the range 107–128 MPa. The corresponding fracture toughness of , measured by single edge V-notch beam method, was 1.16±0.12 MPa·m1/2. The measured fracture strength and fracture toughness were observed to increase with increasing temperature. The fracture mode changed from intragranular at low temperature to intergranular at high temperature. Tensile stress gradient at the surface of the materials caused by a frozen-in gradient in the oxygen content during cooling was proposed to explain the low ambient temperature fracture strength and toughness.  相似文献   

6.
Results are presented of studying electrochemical properties of perovskite-like solid solutions (La0.5 + x Sr0.5 ? x )1 ? y Mn0.5Ti0.5O3 ? δ (x = 0–0.25, y = 0–0.03) synthesized using the citrate technique and studied as oxide anodic materials for solid oxide fuel cells (SOFC). X-ray diffraction (XRD) analysis is used to establish that the materials are stable in a wide range of oxygen chemical potential, stable in the presence of 5 ppm H2S in the range of intermediate temperatures, and also chemically compatible with the solid electrolyte of La0.8Sr0.2Ga0.8Mg0.15Co0.05O3 ? δ (LSGMC). It is shown that transition to a reducing atmosphere results in a decrease in electron conductivity that produced a significant effect on the electrochemical activity of porous electrodes. Model cells of planar SOFC on a supporting solid-electrolyte membrane (LSGMC) with anodes based on (La0.6Sr0.4)0.97Mn0.5Ti0.5O3 ? δ and (La0.75Sr0.25)0.97Mn0.5Ti0.5O3 ? δ and a cathode of Sm0.5Sr0.5CoO3 ? δ are manufactured and tested using the voltammetry technique.  相似文献   

7.
Substitution of Ca by La in initial cubic double perovskite Ba4(Ca2Nb2)O11[VO]1 allowed obtaining phases with a similar structure with a lower content of structural oxygen vacancies, Ba4(La x Ca2 ? x Nb2)O11 + 0.5x [VO]1 ? 0.5x (x = 0.5, 1, 1.5, 2). The impedance technique was used to measure the temperature dependences of conductivity in the atmosphere of dry and humid air. Transport numbers determined using the EMF method in an oxygen-air and water steam concentration cells point to the predominantly hole nature of conductivity in the high-temperature region (T > 600°C) and to predominance of proton conductivity in the low-temperature region. Activation energies of hole and proton conductivity were calculated. Thermogravimetric measurements were carried out under heating from 25 to 1000°C with simultaneous mass-spectrometric determination of evolved H2O and CO2. The properties of the studied Ba4(La x Ca2 ? x Nb2)O11 + 0.5x (x = 0.5, 1, 1.5, 2) phases were compared with the earlier studied Ba4 ? x La x (Ca2Nb2)O11 + 0.5x phases with similar lanthanum content.  相似文献   

8.
Anion conduction in solid solutions Na0.5 – x R0.5 + x F2 + 2x (R = Dy; Ho; Tm; Y; combinations Y0.9Nd0.1, Y0.5Yb0.5, Lu0.998Ho0.002, Lu0.9Ho0.1, Lu0.9Nd0.1) with a fluorite structure is studied at 251–1073 K. The ion transport mechanism alters at T c 723–773 K. Below T c the mechanism involves migration of interstitial fluorine atoms and depends mainly on the defect-containing (clustered) structure of the solid solutions. Above T c the mechanism probably involves the dissociation of interstitial fluorine atoms from structural clusters, and the anion conductivity reaches 1 S cm–1. The fluorite solid solution in the Na0.4Ho0.6F2.2 crystals partly decomposes, yielding NaHoF4 compounds with a gagarinite (NaCaYF6) structure.  相似文献   

9.
Synthesis of fluoro-substituted substances based on brownmillerite Ba2In2O5 is carried out. The width of the homogeneity region of the Ba2In2O5?0.5x F x (0 < x ≤ 0.25) solid solution was established using X-ray analysis. Measurement of temperature dependences of conductivity in atmospheres with different partial pressure of water vapor (pH2O = 3.3 and 2 × 103 Pa) showed an increase in conductivity at T ≤ 550°C in a humid atmosphere, which is due to appearance of proton transport. The dependence of conductivity on partial oxygen pressure (pO2 = 0.21 × 105 to 10?15 Pa) is studied in the temperature range of 500–1000°C; ion transport numbers are calculated. The method of polarization measurements was used to determine transport numbers of fluoride. Total conductivity is divided into ion (proton, oxygen, and fluoride ion) and electron components. Analysis of concentration dependences of conductivities showed that low concentrations of fluoride allow increasing both the total and partial conductivities (oxygen-ion and proton) and, besides, allow shifting the “order-disorder” phase transition by 100°C to the low temperature range.  相似文献   

10.
Oxides CaZr1 ? x Sc x O3 ? x/2 - ?? (x = 0.00?C0.20) were synthesized according to the ceramic technology. The solubility boundary of scandium with formation of solid solutions on the basis of calcium zirconate CaZrO3 ? ?? corresponds to x = 0.07?C0.08. The second phase of CaSc2O4 is present in the samples with scandium content of x = 0.10, 0.15, 0.20. Its fraction grows at an increase in x. The method of full-profile Rietveld analysis was used to calculate the structure parameters for oxides CaZr0.99Sc0.01O2.995 ? ?? and CaZr0.95Sc0.05O2.975 ? ??. The method of isotopic exchange with gas phase analysis was used to study the kinetics of gas-phase oxygen interaction with the CaZr0.95Sc0.05O2.975 ? ?? oxide in the temperature range of 700?C850°C and at oxygen pressures of 0.13?C6.67 kPa. The values of effective activation energies of the oxygen exchange and diffusion processes were 1.36 ± 0.32 and 1.92 ± 0.21 eV, accordingly. The dependence of the interphase exchange rate on the pressure of oxygen corresponds to the power law with the exponent of 0.31 ± 0.04 at the temperature of 750°C.  相似文献   

11.
Lanthanum doped lead zirconate titanate (PLZT) ceramics display excellent electrooptic and photostriction properties because of the existence of cavities in the perovskite structure1-3. The PLZT powders are conventionally prepared by solid state reaction4-5, and the wet chemical methods such as sol-gel techniques are then introduced6-7. However, the homogeneity, morphology and size of the particles, which greatly affect the sinterability and the property of the resulting ceramics, are dif…  相似文献   

12.
The phase composition was studied and overall conductivity of oxides La1 ? x Sr x ScO3 ? ?? (x = 0.01?0.20) was measured as dependent on air humidity (pH2O = 0.04?2.35 kPa) in the temperature range from 100 to 900°C. The samples were synthesized in air at 1600°C. They are single-phase, with a perovskitetype structure with orthorhombic distortions and the density of 94?C99%. The conductivity measurements were carried out using the impedance technique and four-probe dc technique. The contributions of bulk and grain boundary resistances were determined, effective conductivity activation energies were calculated.  相似文献   

13.
The ultrasonic, magnetic and transport properties of Nd0.5Ca0.5Mn1-xAlxO3 (x=0, 0.03) were studied from 15 to 300 K. The temperature dependencies of resistivity and magnetization show that Nd0.5Ca0.5Mn1-xAlxO3 undergoes a charge ordering transition at TCO?257 K. An obvious softening of the longitudinal sound ve- locity above TCO and a dramatic stiffening below TCO accompanied by an attenuation peak were observed. These features imply a strong electron-phonon interaction via the Jahn-Teller effect in the sample. Another broad attenuation peak was observed at around Tp?80 K. This anomaly is attributed to the phase separa- tion between the antiferromagnetic (AFM) and paramagnetic (PM) phases and gives a direct evidence for spin-phonon coupling in the compound. For the x=0.03 sample, both the minimum of sound velocity and attenuation peaks shift to a lower temperature. The results indicate that the charge ordering and CE-type AFM state in Nd0.5Ca0.5Mn1-xAlxO3 are both partially suppressed by replacing Mn with Al.  相似文献   

14.
In this paper, LiCr x Fe x Mn2−2x O4 (x = 0, 0.05, 0.1) electrode materials were prepared by sol–gel technique and characterized by X-ray diffraction (XRD) and transmission electron microscopy or high-resolution transmission electron microscopy techniques. XRD results reveal that the Cr–Fe-co-doped LiCr x Fe x Mn2−2x O4 materials are phase-pure spinels. The electrochemical properties of the LiMn2O4, LiCr0.05Fe0.05Mn1.9O4, and LiCr0.1Fe0.1Mn1.8O4 electrodes in 5 M LiNO3 aqueous electrolyte were investigated using cyclic voltammetry, AC impedance, and galvanostatic charge/discharge methods. In the current range of 0.5–2 A g−1, the specific capacity of the LiCr0.05Fe0.05Mn1.9O4 electrode is close to that of the LiMn2O4 electrode, but the specific capacity of the LiCr0.1Fe0.1Mn1.8O4 electrode is obviously lower than that of the LiMn2O4 electrode. When the electrodes are charge/discharge-cycled at the high current rate of 2 A g−1, the LiCr0.05Fe0.05Mn1.9O4 electrode exhibits an initial specific capacity close to that of the LiMn2O4 electrode, but its cycling stability is obviously prior to that of the LiMn2O4 electrode.  相似文献   

15.
Anti-perovskite manganese nitrides with the general formula Mn3(Cu0.5SixGe0.5?x)N (x = 0.05, 0.1, 0.15, 0.2) were fabricated by mechanical ball milling followed by solid state sintering. The temperature dependence of thermal expansions, magnetic properties and electrical conductivities were investigated in the temperature range of 77–300 K. The results show that the operation-temperature window of negative thermal expansion (NTE) shifts to lower temperature and the magnitude of NTE becomes smaller with increasing Si content. Very low average coefficients of thermal expansion of 1.3 × 10?6 K?1 and 1.65 × 10?6 K?1 were observed in Mn3(Cu0.5Si0.1Ge0.4)N and Mn3(Cu0.5Si0.15Ge0.35)N within the temperature range of 77–300 K, respectively. In addition, the electrical conductivities of all the samples are in the range of 2.5–3.5 × 105 (ohm m)?1.  相似文献   

16.
用机械合金化法成功制备出MgNi和TiNi0.5Mn0.5合金, 并将不同质量的TiNi0.5Mn0.5与MgNi合金球磨复合10 h制备MgNi-x% TiNi0.5Mn0.5 (x=10, 30, 50)合金. XRD结果表明球磨后几种合金均为非晶体, TiNi0.5Mn0.5均匀分散到MgNi合金主相中; 充放电结果表明MgNi-TiNi0.5Mn0.5复合合金的初始容量比纯MgNi合金(443.12 mAh/g)低, MgNi- 10% TiNi0.5Mn0.5首次放电容量是394.46 mAh/g, 但循环寿命有较大的改善, 50次循环后容量保持在232.57 mAh/g, 保持率达59%; 动电位扫描结果表明复合后合金电极抗腐蚀能力提高; 循环伏安法和电化学阻抗谱法研究结果表明: 复合后电极表面的电化学催化性能增强, H原子在合金电极内部的扩散阻抗减小.  相似文献   

17.
Subsolidus phase ratios in the Na2MoO4-NiMoO4-Sc2(MoO4)3 system have been studied using X-ray diffraction, differential thermal analysis, and vibrational spectroscopy. A phase of variable composition Na1 ? x Ni1 ? x Sc1 + x (MoO4)3 (0 ≤ x ≤ 0.5) having NASICON structure (space group \(R\bar 3c\) ) and a triple molybdate crystallizing in triclinic system (space group \(P\bar 1\) ) have been obtained. The high conductivity of Na1 ? x Ni1 ? x Sc1 + x (MoO4)3 allows the phase of variable composition to be regarded as a promising sodiumion-conductive solid electrolyte.  相似文献   

18.
Complex phosphates of titanium, chromium, and metals(2+) of the general formula M0.5(1 + x )Cr x Ti2 ? x (PO4)3 (M = Mg, Ca, Mn, Ni, Sr, Ba, and Pb) were synthesized. Their phase formation was studied by means of X-ray powder diffraction, electron probe microanalysis, differential thermal analysis, and IR spectroscopy. Individual phases and solid solutions crystallizing in kosnarite and langbeinite structure types were identified; their crystallographic parameters were calculated. The catalytic properties of phosphates Ca0.5(1 + x )Cr x Ti2 ? x (PO4)3 in methanol conversion were studied.  相似文献   

19.
The (LaxY1−x)2Mo2O7 system was investigated in the range x = 0.0 to x = 0.5. Single-phase materials exist up to x = 0.4; the x = 0.5 composition has a small impurity contamination. The lattice constants are linear with x and range from 10.224 Å (x = 0.0) to 10.461 Å (x = 0.5). These lattice constants span the same range as the R2Mo2O7 series from R = Y to R = Nd. In this series, there is a discontinuous change from ferromagnetic long-range order to short-range spin-glass-like order between R = Gd and R = Tb. Yet, the solid solutions all show spin-glass-like properties with maxima in the susceptibility in the 20–25 K range and sample-history-dependent effects at lower temperatures. Deviations from the Curie-Weiss Law occur well above the susceptibility maxima. The Weiss constants change from −61 to +41 K for x = 0.0 and x = 0.5, respectively, indicating a competition between antiferromagnetic and ferromagnetic exchange interactions. This competition, coupled with the inherent frustration of the Mo4+ lattice in space group Fd3m is a possible origin of the spin-glass properties.  相似文献   

20.
La10(SiO4)6-x(GaO4)xO3-0.5x的合成及其导电性能   总被引:1,自引:0,他引:1  
王贵领  赵辉  霍丽华  高山 《化学学报》2008,66(12):1411-1416
以溶胶-凝胶法合成前驱体, 在950 ℃时烧结制得La10(SiO4)6-x(GaO4)xO3-0.5x (x=0, 0.5, 1.0, 1.5和2.0)陶瓷样品, 通过TG-DTA, XRD, IR和SEM表征, 所得产品为磷灰石相. 以电化学阻抗谱研究了其导电性能, 发现决定电导率大小的因素有两种, 一是间隙氧的数量, 二是晶胞的大小, 两种因素的综合作用, 使得La10(SiO4)5(GaO4)O2.5的电导率最大, 在700 ℃时其电导率达到4.66×10-2 S&#8226;cm-1. 离子迁移数和氧分压对电导率的研究表明, 其主要的电荷载体是O2-离子.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号