首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report a facile approach to preparing binary mixed polymer brushes and free-standing films by combining the layer-by-layer and surface-initiated polymerization (LbL-SIP) techniques. Specifically, the grafting of mixed polymer brushes of poly(n-isopropylacrylamide) and polystyrene (pNIPAM-pSt) onto LbL-macroinitiator-modified planar substrates is described. Atom transfer radical polymerization (ATRP) and free radical polymerization (FRP) techniques were employed for the syntheses of pNIPAM and pSt, respectively, yielding pNIPAM-pSt mixed polymer brushes. The composition of the two polymers was controlled by varying the number of macroinitiator layers deposited on the substrate (i.e., LbL layers = 4, 8, 12, 16, and 20); consequently, mixed brushes of different thicknesses and composition ratios were obtained. Moreover, the switching behavior of the LbL-mixed brush films as a function of solvent and temperature was demonstrated and evaluated by water contact angle and atomic force microscopy (AFM) experiments. It was found that both the solvent and temperature stimuli responses were a function of the mixed brush composition and thickness ratio where the dominant component played a larger role in the response behavior. Furthermore, the ability to obtain free-standing films was exploited. The LbL technique provided the macroinitiator density variation necessary for the preparation of stable free-standing mixed brush films. Specifically, the free-standing films exhibited the rigidity to withstand changes in the solvent and temperature environment and at the same time were flexible enough to respond accordingly to external stimuli.  相似文献   

2.
To develop stimuli-responsive ultrathin polymer films on a solid substrate, a novel photo-cross-linkable polymer with both temperature- and pH-responsive properties was prepared. The photoreactive 4-aminobenzophenone (BP) was introduced onto the side groups of poly(N-isopropylaclylamide-co-2-carboxyisopropylaclylamide) [poly(NIPAAm-co-CIPAAm)]. This copolymer was designed for highly random sequences of comonomers. After the formation of spin-coated polymer films on a solid substrate, UV-light irradiation started the cross-linking reaction. The spin-coating processes and stability of the polymer films were quantitatively monitored by a quartz crystal microbalance (QCM), and the thickness was estimated using an atomic force microscope (AFM). These measurements confirmed the formation of a very plain polymer film, and the film thickness was precisely controlled by the concentration of the polymer solution used for spin coating. Moreover, the obtained films showed a high stability due to the cross-liking reaction and UV irradiation. Cyclic voltammetry using potassium ferricyanide revealed that the ions could permeate the photo-cross-linked ultrathin polymer films. The permeability of the ultrathin hydrogel films was dramatically changed by varying the pH and temperature of the aqueous media. These observations suggest that the preparation of isopropylacrylamide-based stimuli-responsive ultrathin hydrogel films is possible.  相似文献   

3.
We demonstrate the electrochemical switching of conformation of surface-bound polymer brushes, by grafting environmentally sensitive polymer brushes from an electrochemically active conducting polymer (ECP). Using atom transfer radical polymerization (ATRP), we grafted zwitterionic betaine homopolymer and block copolymer brushes of poly(3-(methacryloylamido)propyl)-N,N'-dimethyl(3-sulfopropyl)ammonium hydroxide) (PMPDSAH) and poly(methyl methacrylate)-b-PMPDSAH, from an initiator, surface-coupled to a poly(pyrrole-co-pyrrolyl butyric acid) film. The changes in ionic solution composition in the surface layer, resulting from oxidation and reduction of the ECP, trigger a switch in conformation of the surface-bound polymer brushes, demonstrated here by electrochemical impedance spectroscopy (EIS) and in a change of wettability. The switch is dependent upon temperature in a way that is analogous to the temperature-dependent solubility and aggregation of similar betaine polymers in aqueous solution but has a quite different dependence on salt concentration in solution. The switch is fully reversible and reproducible. We interpret the switching behavior in terms of a transition to a "supercollapsed" state on the surface that is controlled by ions that balance the charge state of the ECP and are adsorbed to the opposite charges of the zwitterionic graft, close to the graft-ECP interface. The behavior is significantly modified by hydrophobic interactions of the block copolymer graft. We speculate that the synergistic combination of properties embodied in these "smart" materials may find applications in electrochemical control of surface wetting and in the interaction with biomolecules and living cells.  相似文献   

4.
Results of computer simulations of polymer layers consisting of chains grafted by one end on an unpenetrable plane are presented. Characteristics of translational and rotational motion of different chain segments and correlation functions of chain radii were calculated both for single layers at different grafting densities s and for two interacting layers at different distances D between parallel grafting planes. Two values of grafting density were used in the latter case. The behavior of different correlation times as function of s and D and the interplay between the interpenetration of the brushes and rotational and translational motion are discussed. Both relaxation functions and mean square displacements are discussed in terms of stretched exponentials, and the behavior of the resulting “Kohlrausch exponents” γ is presented in detail.  相似文献   

5.
We perform molecular dynamics simulations on a bead-spring model of pure polymer grafted nanoparticles (PGNs) and of a blend of PGNs with a polymer melt to investigate the correlation between PGN design parameters (such as particle core concentration, polymer grafting density, and polymer length) and properties, such as microstructure, particle mobility, and viscous response. Constant strain-rate simulations were carried out to calculate viscosities and a constant-stress ensemble was used to calculate yield stresses. The PGN systems are found to have less structural order, lower viscosity, and faster diffusivity with increasing length of the grafted chains for a given core concentration or grafting density. Decreasing grafting density causes depletion effects associated with the chains leading to close contacts between some particle cores. All systems were found to shear thin, with the pure PGN systems shear thinning more than the blend; also, the pure systems exhibited a clear yielding behavior that was absent in the blend. Regarding the mechanism of shear thinning at the high shear rates examined, it was found that the shear-induced decrease of Brownian stresses and increase in chain alignment, both correlate with the reduction of viscosity in the system with the latter being more dominant. A coupling between Brownian stresses and chain alignment was also observed wherein the non-equilibrium particle distribution itself promotes chain alignment in the direction of shear.  相似文献   

6.
Using scattering scanning nearfield infrared microscopy (s-SNIM), we have imaged the nanoscale phase separation of mixed polystyrene-poly(methyl methacrylate) (PS-PMMA) brushes and investigated changes in the top layer as a function of solvent exposure. We deduce that the top-layer of the mixed brushes is composed primarily of PMMA after exposure to acetone, while after exposure to toluene this changes to PS. Access to simultaneously measured topographic and chemical information allows direct correlation of the chemical morphology of the sample with topographic information. Our results demonstrate the potential of s-SNIM for chemical mapping based on distinct infrared absorption properties of polymers with a high spatial resolution of 80 nm × 80 nm.  相似文献   

7.
Poly(GEMA) or poly(GEMA)-sulfate grafted surfaces were prepared for the purpose of developing biomaterials with anticoagulant surfaces. Their functionalities were investigated as anticoagulant activity, proteins and cells adhesion activity, and complement activation activity. These results revealed that the adhesion of blood cells onto a GEMA-sulfate grafted surface was due to protein adsorption and that complement activation onto a GEMA-sulfate grafted surface was larger than that on a GEMA grafted surface. A GEMA-sulfate grafted surface, however, exhibited good anticoagulant activity. These functions seemed to be due to the specific functionality of the SO3 groups in a GEMA-sulfate.  相似文献   

8.
It was found that PVC films grafted with methacrylic acid do not swell in either water or methanol, two solvents of poly(methacrylic acid), even for high grafting ratios. The swelling of these films was examined in mixtures of methylene chloride with methanol and curves of different shapes were obtained depending on the grafting ratio. PVC films grafted with acrylic acid readily swell in both water and methanol but they remain hard in the swollen state. The equilibrium swelling increases with swelling temperature but this process is not reversible; films swollen at high temperature keep a high degree of swelling even when the system is cooled.  相似文献   

9.
Many vinyl homopolymers are surface active by virtue of their side chains being hydrophilic while backbone hydrocarbon structure being hydrophobic, thus they form remarkably stable monolayers. We report here the studies of collective dynamics of these monolayers and thin films with the technique of surface light scattering by the spontaneous capillary waves on the air/water and oil/water interfaces. The dynamics are represented by the viscoelastic parameters of the lateral dilational mode, which couples efficiently with the transverse mode in the case of air/water interface.  相似文献   

10.
《European Polymer Journal》1987,23(10):803-807
Casein was grafted with acrylonitrile and n-butyl methacrylate. The stress-strain characteristics at various temperatures were studied. The tensile strength and percent elongation increase, attain a maximum and then decrease with increase of temperature. Stress relaxation was also studied at various temperatures. The stress decays rapidly with a steep negative slope at 20° and 70°C suggesting that there are transitions at these temperatures.  相似文献   

11.
Monte Carlo simulations are presented for a coarse-grained model of polymer brushes with polymers having a varying degree of stiffness. Both linear chains and ring polymers grafted to a flat structureless non-adsorbing substrate surface are considered. Applying good solvent conditions, it is shown that with growing polymer stiffness the brush height increases significantly. The monomer density profiles for the case of ring polymers (chain length N(R) = 64) are very similar to the case of corresponding linear chains (N(L) = 32, grafting density larger by a factor of two) in the case of flexible polymers, while slight differences appear with increasing stiffness. Evidence is obtained that the chain dynamics in brushes is slowed down dramatically with increasing stiffness. Very short stiff rings (N(R) ≤ 16) behave like disks, grafted to the substrate such that the vector, perpendicular to the disk plane, is oriented parallel to the substrate surface. It is suggested that such systems can undergo phase transitions to states with liquid crystalline order.  相似文献   

12.
The influence of polymer grafting on the phase behavior and elastic properties of two tail lipid bilayers have been investigated using dissipative particle dynamics simulations. For the range of polymer lengths studied, the L(c) to L(α) transition temperature is not significantly affected for grafting fractions, G(f) between 0.16 and 0.25. A decrease in the transition temperature is observed at a relatively high grafting fraction, G(f) = 0.36. At low temperatures, a small increase in the area per head group, a(h), at high G(f) leads to an increase in the chain tilt, inducing order in the bilayer and the solvent. The onset of the phase transition occurs with the nucleation of small patches of thinned membrane which grow and form continuous domains as the temperature increases. This region is the co-existence region between the L(β)(thick) and the L(α)(thin) phases. The simulation results for the membrane area expansion as a function of the grafting density conform extremely well to the scalings predicted by self-consistent mean field theories. We find that the bending modulus shows a small decrease for short polymers (number of beads, N(p) = 10) and low G(f), where the influence of polymer is reduced when compared to the effect of the increased a(h). For longer polymers (N(p) > 15), the bending modulus increases monotonically with increase in grafted polymer. Using the results from mean field theory, we partition the contributions to the bending modulus from the membrane and the polymer and show that the dominant contribution to the increased bending modulus arises from the grafted polymer.  相似文献   

13.
Relationships between the chemical composition of the gas phase and the properties of SiCxNyHz films produced from hexamethyldisilazane by plasma-enhanced chemical vapor deposition have been studied. The plasma composition has been examined by optical emission spectroscopy. Thermal analysis of the films with simultaneous mass spectrometric detection of released gases has been performed. On the basis of the results and published data, mechanisms for the formation of films by plasma polymerization have been proposed and the film growth at a low plasma power and high reactor temperatures has been found to follow the heterogeneous mechanism.  相似文献   

14.
Plasma polymer thin films with encapsulated small metal particles were prepared by simultaneous plasma polymerization and metal evaporation. Based on transmission electron microscope (TEM) micrographs, particle size and shape were analysed on films with continuously varying filling factor. Thermal annealing causes dramatic changes of the particle size and shape. The optical (UV, VIS, NIR) properties of the films were determined by the UV-absorption of the plasma polymer and by the plasma resonance absorption of the metal particles. The changes in the transmission spectra during thermal annealing were simulated with different effective medium theories. The calculated transmission spectra were fitted to the experimental spectra.  相似文献   

15.
Polymer films with a dispersed liquid crystal were prepared by photopolymerization of (meth)acrylic monomers. The electrooptical properties of these films were studied. The influence exerted by the composition of the monomer mixture, cross-linking agents, and chain-transfer agent on the liquid crystal drop size and on the transmission of the polymer-liquid crystal films was examined.  相似文献   

16.
A method to quantify the composition of thin films using infrared spectroscopic ellipsometry (IRSE), supplemented by visible spectroscopic ellipsometry (VISSE), is proposed. Because ellipsometry measures the thickness and optical constants of a surface layer simultaneously, the absorption coefficient of the film as a function of wavelength can be obtained. Using values of the absorption coefficients for the pure components of the film, the percentages (mol.% or wt.%) of each component in the film can be calculated. The method is demonstrated in a study of the hydration of oxide films on electropolished aluminium and the anodically formed barrier oxide film. The IRSE technique shows that hydration of the films by immersion in boiling water results in the conversion of aluminium oxide to pseudoboehmite. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
The mechanical behavior of latex films is governed by their macromolecular nature as well as by their origin from particles dispersed in an aqueous medium. When monomers of different polarity are copolymerized in emulsion copolymerization, a heterogeneous distribution of the polar groups in the latex and the film can occur, owing to the different water solubilities of the comonomers. Films from these latices in many cases show a two-phase morphology, first, consisting of the main polymer within the particles and, second, a phase which is concentrated in the interphase between the original particles and which has a strong influence on the mechanical properties of the films. Films from latices with crosslinked particles behave like homogeneous networks in the linear viscoelastic range, i.e. at small strains. Structured networks are found when latex films are interparticularly crosslinked during or after film formation, e.g. by polar bifunctional monomers or metal salts. Tensile tests of films show that the mechanical strength of latex films develops in the last stage of film formation by interdiffusion and entaglement formation across particle boundaries.  相似文献   

18.
Surfaces of amphiphilic phosphorylcholine polymer (PC1036) prepared by spin-coating were characterized by spectroscopic ellipsometry, water contact angle and atomic force microscopy. The antifouling properties of the PC1036 films to marine benthic diatom Nitzschia closterium MMDL533 were also investigated. The results showed that the dry PC1036 film promoted the adhesion of N. closterium MMDL533 because the hydrophobic lauryl groups were present in the film surface. The 2 h-swelled PC1036 films had excellent anti-fouling properties with extremely low attachment densities and retention densities no matter what the annealing temperature was. The thickness of the coated films lower than 147 Å had a profound effect on the film anti-fouling properties. Otherwise, when the film thickness was higher than that value, there was no more improvement of diatom cell reduction observed. The annealing temperature had only a little effect on the film resistant to diatom adhesion, which might be attributed to two factors including the PC group packing densities in the outer PC layer and the equilibrated water volume fraction in the 2 h-swelled PC1036 films.  相似文献   

19.
Inverse opal films with unique optical properties have potential as photonic crystal materials and have stimulated wide interest in recent years. Herein, iridescent hybrid polystyrene/nanoparticle macroporous films have been prepared by using the breath‐figure method. The honeycomb‐patterned thin films were prepared by casting gold nanoparticle‐doped polystyrene solutions in chloroform at high relative humidity. Highly ordered hexagonal arrays of monodisperse pores with an average diameter of 880 nm are obtained. To account for the observed features, a microscopic phase separation of gold nanoparticles is proposed to occur in the breath‐figure formation. That is, individual gold nanoparticles adsorb at the solution/water interface and effectively stabilize condensed water droplets on the solution surface in a hexagonal array. Alternatively, at high nanoparticle concentrations the combination of breath‐figure formation and nanoparticle phase separation leads to hierarchical structures with spherical aggregates under a honeycomb monolayer. The films show large features in both the visible and NIR regions that are attributed to a combination of nanoparticle and ordered‐array absorptions. Organic ligand‐stabilized CdSe/CdS quantum dots or Fe3O4 nanoparticles may be loaded into the honeycomb structure to further modify the films. These results demonstrate new methods for the fabrication and functionalization of inverse opal films with potential applications in photonic and microelectronic materials.  相似文献   

20.
The critical properties of polymer solutions confined in thin‐film environments is studied with simple scaling arguments and a molecular theory. For purely repulsive surfaces, the critical volume fraction is a universal function of x = N1/2/L, where N is the chain length and L is the film thickness. The critical volume fraction is nonmonotonic in x and shows a deep minimum at a film thickness several times larger than the chain's radius of gyration. This nonmonotonic behavior results from the interplay between the surface–polymer entropic repulsion and the tendency of the film to avoid large density gradients. The critical temperature is a monotonically increasing function of L, as L goes from the two‐dimensional limit to the three‐dimensional limit. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1849–1853, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号