首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We performed measurements of gettering efficiencies for Cu in silicon wafers with competing gettering sites. Epitaxial wafers (p/p+) boron-doped with a polysilicon back side allowed us to compare p+ gettering with polysilicon gettering. We further measured metal distributions in p+/p- epitaxial test wafers, with the p- substrate wafers pretreated for oxygen precipitation to compare p+ gettering with oxygen precipitate gettering. Our test started with a reproducible spin-on contamination in the 1012 atoms/cm2 range, followed by thermal treatment in order to redistribute the metallic impurity. Wafers were then analyzed by a novel wet chemical layer-by-layer etching technique in combination with inductively coupled plasma mass spectrometry. This led to “stratigraphical” concentration profiles of the impurity, with typical detection limits of 5–10×1012 atoms/cm3. Twenty-five percent of the total Cu contamination in the p/p+/poly wafer was found in the p+ layer, whilst 75% was gettered by the polysilicon. Obviously, polysilicon exhibits a stronger gettering than p+ silicon, but due to the large distance from the front surface, polysilicon was less effective in reducing impurities from the front side of a wafer compared with p+ gettering. An epitaxial layer p+ on top of p- substrates with oxygen precipitates gettered 50% of the total Cu; while the other 50% of the Cu was measured in the p- substrate wafer with oxygen precipitates. Without oxygen precipitates, 100% of the spiked Cu contamination was detected inside the p+ layer. Gettering by oxygen precipitates thus occurs in the same temperature range as that where p+ silicon begins to getter Cu. Received: 3 September 2001 / Accepted: 17 October 2001 / Published online: 27 March 2002  相似文献   

2.
We have measured the gettering efficiencies for Cu and Ni of various silicon wafers, such as MeV-boron-implanted p- polished wafers treated with two different implantation doses of 3×1013 atoms/cm2 B and 1×1015 atoms/cm2 B, respectively. A third kind of wafer was covered with a poly-silicon back side and thermally pretreated before the gettering test to form oxygen precipitates in the bulk. The gettering test started with a reproducible spin-on spiking on the front side of the wafers in the range around 1012 atoms/cm2, followed by a thermal treatment to redistribute the metallic impurities in the wafer. Then the gettering efficiencies were measured by a novel wet chemical layer-by-layer etching technique in combination with inductively coupled plasma mass spectrometry. This led to “stratigraphical concentration profiles” of the metallic impurities in the wafer with typical detection limits of (5–10)×1012 atoms/cm3. The concentration profiles were compared with concentration profiles found after testing the gettering efficiency of p/p+ epitaxial wafers. Almost 100% of the total intentional Cu spiking was recovered in the boron buried layer for both implantation doses. On the front surface and in the region between the front surface and the buried layer a Cu concentration ∼20 times higher than on/in p/p+ epitaxial wafers/layers was measured for the implanted specimen. The lower implantation dose led to higher Cu-concentration levels on the front surface compared to the higher implantation dose. The wafer containing a MeV-boron-implanted layer as well as oxygen precipitates and a poly-silicon back side exhibited a Cu distribution of 30/∼0/70%, respectively. Thus, the gettering by poly-silicon exceeded both the gettering effects by the buried layer and by the oxygen precipitates. Ni gettering in MeV-boron-implanted wafers exhibited other characteristics. The gettering efficiency of the buried layer was 65%, while the remaining Ni contamination was equally distributed between the front-side region and the wafer back side. A wafer containing a buried layer obtained by a 1×1015 atoms/cm3 B dose and oxygen precipitates exhibited 17% of the total Ni contamination in the boron layer, while ∼80% of the total Ni contamination was gettered by oxygen precipitates. In the case of buried layer/oxygen precipitates/poly-silicon back side the distribution was found to be 13/37/45%, thus exhibiting equal gettering strengths for oxygen precipitates and the poly-silicon back side for Ni contamination. The results were discussed in terms of segregation and relaxation-induced gettering mechanisms including different reaction rates. Received: 30 May 2001 / Accepted: 16 June 2001 / Published online: 30 August 2001  相似文献   

3.
We have measured the gettering efficiencies for Cu and Ni in p/p-Si epitaxial wafers. The wafers were pretreated to obtain oxygen precipitates of different sizes and densities in the bulk. Gettering tests started with a reproducible spin-on spiking in the range of 1012 atoms/cm2, followed by thermal treatment to drive-in and redistribute the impurities in the wafer. Subsequently, the wafers were analyzed by a novel stratigraphical layer-by-layer etching technique in combination with inductively coupled plasma mass spectrometry. Gettering efficiencies for Ni did not depend on oxygen precipitate sizes and densities as long as ΔOi was larger than 0.2×1017 atoms/cm3 and the bulk micro defect densities were detectable by preferential etching (107 cm-3). In these cases, gettering efficiencies were 96–99% for Ni, while wafers not containing any measurable BMDs exhibited no detectable gettering. Cu exhibited a more complex behavior because the total Cu contamination was found to be divided into two species, one mobile and the other immobile species. A dependence on BMD size and BMD density of the Cu distributions in the wafers was also detected. Gettering effects were increased with increasing BMD densities and sizes. For BMD densities <109 cm-3, Cu was not efficiently gettered by oxygen precipitates. Even for BMD densities >1010 cm-3, gettering effects due to oxygen precipitates were one order of magnitude lower than in heavily boron-doped silicon. Received: 19 January 2001 / Accepted: 31 January 2001 / Published online: 20 June 2001  相似文献   

4.
Based on experimental findings we set up calculations of numerical modeling of gettering efficiencies for Cu in various silicon wafers. Gettering efficiencies for Cu were measured by applying a reproducible spin-on contamination in the 1012 atoms/cm2 range, followed by a thermal treatment to redistribute the metallic impurity. Subsequently, the wafers were analyzed by a novel wet chemical layer-by-layer etching technique in combination with inductively coupled plasma mass spectrometry. We investigated p/p+ and n/n+ epitaxial wafers with different doping levels and different substrate-doping species. We have also investigated gettering efficiencies of phosphorus-diffused p- and n-type wafers. Heavilyboron doped silicon exhibited a gettering efficiency of ∼100%, while gettering by n+ silicon occurred for doping levels >3×1019 atoms/cm3 only. In another set of experiments we investigated the dependence of the gettering efficiency of p-type wafers with poly-silicon back sides for different cooling rates and Cu spiking levels. A strong dependence on both parameters was found. Cu gettering in p/p+ epitaxial wafers was modeled by calculating the increased solubility of Cu in p+ silicon compared to non-doped silicon taking into account the Fermi-level effect, which stabilizes donors in p+ silicon, and the pairing reaction between Cu and B. Calculated gettering efficiencies were in very good agreement with experimental results. Gettering in n+ silicon was similarly modeled in terms of pairing reactions and the Fermi-level effect. But, for n-type silicon, many experimental uncertainties existed; thus, we applied our expressions to solubility data of Hall and Racette to obtain the unknown parameters. The empirical calculations were in good agreement even with results on n/n+ wafers. For phosphorus-diffused wafers we had to consider an excess vacancy concentration of 1.2–5.5 times the equilibrium concentration to explain the experimental findings by the model. Gettering by poly-silicon back sides was simulated by solving the time-dependent diffusion equation with boundary conditions that take into account different surface reaction rates of silicon point defects. Using this advanced model, the experimentally measured gettering efficiencies were reproduced within the uncertainty of the measurement. Received: 3 September 2001 / Accepted: 4 September 2001 / Published online: 20 December 2001  相似文献   

5.
We have performed measurements on the gettering efficiencies for Ni in different silicon wafers. Gettering efficiencies were measured of wafers grown by different crystal-growth techniques, such as Czochralski-grown (CZ) and floating zone (FZ), as well as wafers containing crystal-originated particles (COPs) of different size and density. Lightly boron doped CZ wafers covered with an epitaxial layer were also evaluated. In another set of experiments, we compared different back-side-gettering techniques, like poly-silicon, stacking faults and He-implanted back sides and the dependence of back-side gettering on cooling rate and contamination level. Internal surfaces of oxygen precipitates were also investigated. The gettering test started with a reproducible spin-on contamination in the range around 1012 atoms/cm2 and was followed by a thermal treatment to redistribute the Ni impurity in the wafer. Subsequently, wafers were analyzed for their surface and bulk contamination by a novel layer-by-layer etching, stratigraphical technique in combination with inductively coupled plasma mass spectrometry. No detectable gettering effect of COPs was found. FZ wafers differed remarkably in their gettering behavior from CZ wafers, obviously due to differences in aggregated self-point defects. Most remarkably, the deposition process of an epitaxial layer changed the gettering behavior of p/p- wafers. Comparing the gettering efficiencies of different back sides, an extraordinarily high gettering efficiency of He-implanted voids can be anticipated, which was higher than the gettering efficiency of poly-silicon and stacking faults. High cooling rates at the end of the drive-in cycle and low contamination levels lowered the gettering efficiencies of back-side-gettering techniques, suggesting a diffusion-limited gettering process. Based on the dependence of the gettering efficiencies on different drive-in cycles, a surface reaction as a mechanistic initiation of the drive-in must be assumed. Oxygen precipitates exhibited a high gettering effect for Ni contamination. All experimental results are interpreted by available active surfaces in the gettering phases. Received: 30 May 2001 / Accepted: 16 June 2001 / Published online: 30 August 2001  相似文献   

6.
The integrity of ultrathin gate oxides was investigated as a function of polished and epitaxial wafer surfaces with various gettering sites. After intentional contamination of wafers with 1×1011 atoms/cm2 and 5×1012 atoms/cm2 Cu and Ni by a spin-on technique of high reproducibility, we performed 0.18-μm low-thermal-budget CMOS process runs. Thermal oxides were grown with various gate oxides in the range of 5–17 nm. After a MOS-capacitor fabrication we applied a ramped current-density test to study the gate-oxide integrity. Generally, thinner gate oxides exhibited a much more robust behavior than thicker oxides. The gate-oxide integrity was strongly influenced by different gettering sites. Although a higher Ni contamination led to a higher number of gate-oxide failures, Cu contamination exhibited a higher impact on the gate-oxide integrity than Ni. Received: 12 September 2000 / Accepted: 21 September 2000 / Published online: 22 November 2000  相似文献   

7.
Transitions between the five fine-structure levels in the 3s 23p 3 ground configuration of Fe XII (P-like) are of interest in astrophysics and terrestrial plasma diagnostics. The decay rates give rise to level lifetimes in the millisecond range, which have been measured recently at a heavy-ion storage ring. While most of the 3s 23p 23d levels are short-lived, two of these levels have no E1 decay channels and may also have millisecond lifetimes. We present HFR and MCDF calculations of the E1, M1, E2 and M2 transition rates between the 3s 23p 3, 3s3p4 and 3s 23p 23d levels and compare the lifetime results to most recent experimental data as well as to other predictions. Received 2 October 2001 / Received in final form 22 January 2002 Published online 28 June 2002  相似文献   

8.
Phosphorus diffusion gettering, which can effectively reduce the transition-metal impurities in the bulk of Si wafer and enhance the minority carrier lifetime (MCLT), is a well-known process to improve the performances of solar cells. Especially, the appropriate gettering process is further required for manufacturing solar cells using an upgraded metallurgical-grade silicon (UMG Si) wafer. In this work, an improvement in the MCLT of the UMG Si wafer including the single-crystalline and multi-crystalline Si wafer after phosphorus diffusion gettering was confirmed by using the quasi-steady state photo-conductivity (QSSPC) measurement and the microwave photo-conductance decay (μW-PCD) method. The experimental results were compared with the MCLT variations calculated through the simulation of the Fe distributions in the Si wafers. It was also observed that the efficiency of the UMG Si solar cell increased by 0.53% due to the two-step gettering process.  相似文献   

9.
KrF excimer laser-assisted dry and steam cleaning of single-crystal silicon wafers contaminated with three different types of metallic particles was studied. The laser fluence used was 0.3 J/cm2. In the dry process, for samples cleaned with 100 laser pulses the cleaning efficiency was 91, 71 and 59% for Au, Cu and W particles, respectively, whilst in steam cleaning the efficiency is about 100% after 5 laser pulses, independently of the type of contaminant. The effects of laser irradiation on the Si surface are investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Laser processing at 0.3 J/cm2 does not deteriorate the Si-wafer surface, either in dry or steam cleaning. However, the measured XPS intensity coming from the metallic component is greater on the cleaned surfaces than in the initial condition. Quantification of the XPS results, assuming a stratified overlayer model for the detected species and accounting for the presence of the metallic particles on the surface, showed that the obtained results can be explained by the formation of a fractional metallic monolayer on the cleaned surfaces, due to partial vaporisation of small particles initially present on the sample surface. This contamination of the substrate could be considered excessive for some applications and it shows that the process requires careful optimisation for the required efficiency to be achieved without degradation of the substrate. Received: 14 January 2001 / Accepted: 19 February 2001 / Published online: 20 June 2001  相似文献   

10.
Rutherford backscattering of 1.75 and 2 MeV 4He+ ions has been utilized to study the high temperature gettering of Fe, Co, Ni, Cu and Au from silicon by ion-damaged surface layers. In a typical experiment a metal film was evaporated onto one side of a silicon wafer (125 microm thick) which had received ion implantation damage (1016/cm2 Si+ ions at 100 keV) on the opposite side; the wafer was then annealed at 900°C, usually for 30 min. The results of such experiments show that the metals studied may be divided into two classes, those which are gettered slowly - Fe, Co, and Au, and those gettered rapidly - Cu and Ni. Fe, Co, and Au were found at levels of 1×1013?1×1014/cm2 in the damaged layer, whereas Cu and Ni appeared at levels of 6×1014 to 5 ×1016cm2. The gettered level of Au, one of the “slow” group, was increased ten-fold by an equal increase in the anneal time to 300 min. The gettered Cu and Au exhibited double peaks in the scattered ion spectra, corresponding to metal concentrated at the most heavily damaged region (end of range for Si implant) and also at the outer surface, with a separation of ~ 1300 Å. A simple model is proposed to explain the slow and fast gettering, based on published interstitial diffusivities and solubilities of the five elements studied.Rutherford scattering has proven to be well suited for the quantitative identification of low levels of impurities on Si surfaces and for impurities gettered at damaged layers close to the surface.  相似文献   

11.
The stopping powers of C, N, and O ions in Cr, Fe, Co, Ni, Cu and Zn in the energy range 500 keV to 2 MeV have been measured relative to that for He ions in the same material. The measurements were made utilizing energy spectra of particles backscattered from thick substrates of the target material into which a heavy material (Bi) had been previously implanted to a shallow depth. Assuming that dE/dx for He is known, the dose of implanted Bi can be determined from a He backscattering spectrum. Then this dose is used to calculate the unknown stopping power from a backscattering spectrum of the ion to be studied.

The data are analysed in terms of a function dE/dx=aE p +b The experimental results give values of p ranging from 0.3 to 0.5. Our absolute dE/dx values (normalized to known dE/dx values for He ions) are somewhat higher than those tabulated by Northcliffe and Schilling(3) and considerably higher than predicted by the LSS(6) theory.  相似文献   

12.
One-dimensional metal lines of silver nanoparticles with a nano-sized width were generated onto silicon surface by using a nano-level lithography technique, field induced oxidation (FIO) by AFM, on self-assembled monolayer-modified Si wafers. This FIO technique provided SiO2 lines a width of less than 100 nm. Short-time immersion of partially anodized silicon surface which is covered by a cationic silanol surfactant ((CH3O)3SiCH2CH2CH2N(CH3)3+Cl)-monolayer into quaternary ammonium (HSCH2CH2N(CH3)3+Br)-covered silver nanoparticles readily and reproducibly gave nano-metal lines of silver onto silicon wafers. Hydrophilicity of the whole wafer surface was indispensable for homogeneously wetting the anodized SiO2 area with a nanodimensional width.  相似文献   

13.
Interface reaction and magnetism of epitaxially-grown Fe on InAs(100) are studied by core-level photoemission (As 3d and In 4d) and Fe 2p X-ray magnetic circular dichroism using synchrotron radiation. The reactivity of Fe/InAs(100) is relatively low compared to that of other interfaces involving deposition of 3d metals on III-V semiconductors. As a consequence, we observe a magnetic signal at Fe L2, 3 edges for the lowest thicknesses studied (1 ML). The atomic magnetic moment reaches a value close to that of the bulk α-Fe (2.2 μ B) for Fe coverages exceeding 5 ML. A ferromagnetic compound with approximate stoichiometry of FeAs is formed at the interface. The orbital magnetism represents between 12 and 20% of the total momentum, due to 3d density of states depletion and to crystal-field modification of the electronic levels. These properties make the Fe/InAs(100) interface very promising for spin-tunneling devices. Received 4 April 2002 / Received in final form 13 May 2002 Published online 31 July 2002  相似文献   

14.
The production ofK + andπ + mesons and protons inpBe collisions atT p=2.9 GeV has been studied at the ITEP proton synchrotron. Ejectiles with a momentum ofp=545 MeV/c were observed under an emission angle ?=17°. The detectors which have been developed for the identification of kaons out of a six orders of magnitude more intense background of pions and protons are described. A cross-section ratio d2σ K +/dΩdp: d2 σ p /dΩdp: d2σ p /dΩdp of (1±0.34):(85±1):(31±1) has been measured. Normalization with existing pion data yields an invariant differential cross sectionE·d3σ K +/d3 p=(3.1±1.2) mbGeV?2c3sr?1 and a total cross section of σtot(pBe)=(3.7±1.5) mb. These cross sections are compared with existing data and theoretical predictions. TheA dependence ofK + production in the few-GeV range is analyzed.  相似文献   

15.
Aluminium‐doped p‐type (Al‐p+) silicon emitters fabricated by means of a simple screen‐printing process are effectively passivated by plasma‐enhanced chemical‐vapour deposited amorphous silicon (a‐Si). We measure an emitter saturation current density of only 246 fA/cm2, which is the lowest value achieved so far for a simple screen‐printed Al‐p+ emitter on silicon. In order to demonstrate the applicability of this easy‐to‐fabricate p+ emitter to high‐efficiency silicon solar cells, we implement our passivated p+ emitter into an n+np+ solar cell structure. An independently confirmed conversion efficiency of 19.7% is achieved using n‐type phosphorus‐doped Czochralski‐grown silicon as bulk material, clearly demonstrating the high‐efficiency potential of the newly developed a‐Si passivated Al‐p+ emitter. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
In an experimental study, the multi-ionisation of metallic clusters (Nan) has been analysed in collisions with light ions in low charge states (H+, He+, He2+, O3+) at collision velocities below 1 a.u. Cluster ions are produced in charge states up to 5+. The average charge of the nano-particles is found to increase linearly with the variation of projectile velocity and the square of the effective projectile charge, well in agreement with the electronic stopping power of the bulk material. A fraction of 50% to 30% of the total projectile energy loss (decreasing with velocity) is transferred into vibrational modes in good agreement with recent theoretical predictions. Received 8 November 2000 and Received in final form 26 January 2001  相似文献   

17.
We have performed a systematic SIMS study into the effect of (i) the chemical nature and (ii) the energy of the primary ions on the decay length which characterizes the exponential fall-off of impurity sputter profiles. The samples consisted of low resistivity, p-type Si covered with thin metallic overlayers. Bombardment was carried out at 2° off normal. Aspect (i) was investigated for tracers of Cu and Ga using N 2 + , O 2 + , and Ne+ primary ions at an energy of 5 keV/atom. The effect of the beam energy, aspect (ii), was studied for eight different tracer species and N 2 + primary ions at energies between 2 and 5 keV/atom. In the case of Ga, was found to be shorter with N 2 + or O 2 + primary ions (=7.0 and 7.5 nm, respectively) than with Ne+ (=12 nm). This effect is attributed to beam induced formation of Si3N4 or SiO2 layers, whereby the effective width of the internal distribution of intermixed Ga impurities in the Si subsystem is reduced significantly. In contrast to Ga, the decay length for Cu is smallest under bombardment with Ne+ (=16 nm), quite large with N 2 + (26 nm) and extremely large with O 2 + (2.2 m). Segregation of Cu atoms at the Si3N4/Si and the SiO2/Si interface, respectively, is responsible for this depressed impurity removal rate. Within experimental accuracy the observed variation of the decay length with N 2 + energy E [keV/atom] can be written in the form =kE p, where k and p are element specific parameters which range from k=1.2 nm for Pb to 10 nm for Cu and from p=0.6 for Cu and Ag to 1.0 for Pb. The results are discussed with reference to conceivable shapes of the distribution of intermixed impurity atoms.On leave from NTT Applied Electronics Laboratories, 3-9-11, Midori-cho, Musashino-shi, Tokyo 180, Japan  相似文献   

18.
The adiabatic potential energy curves of the low-lying electronic states of the MgAr molecule dissociating into Mg (3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p)+Ar have been investigated. The electronic structure of the Mg-Ar molecule is calculated using [Mg2+] and [Ar] core pseudopotentials complemented by the core polarization operators for both atoms, considering the molecule to be a two-electron system. The derived spectroscopic constants of the ground state and lower excited states are in good agreement with available experimental and theoretical work. In addition, for the purpose of checking the pseudopotential accuracy on a simpler related system, low lying potential energy curves of the single active electron Mg+Ar ion are also reported and the corresponding molecular constants are compared with those in the existing literature.  相似文献   

19.
Photoelectron energy distribution curves for Cu in Cu-Phthalocyanine have been investigated around the Cu 3p threshold at hv = 75 eV. A sharp 3d-electron satellite with two peaks with initial energies of 5.5 and 8.5 eV below the center of the Cu 3d main peak was found which exhibits a strong resonant enhancement at threshold. These results are explained as a two-electron shake-up multiplet with a 3p63d84s2 + e? final state configuration. The results are compared with metallic Cu, and the different chemical, relaxation (screening) and configuration shifts are discussed.  相似文献   

20.
X-ray photoelectron spectroscopy was used to investigate ACr2S4 (, Zn, Mn, Fe, Fe:Cu) and BCr2Se4 (, Cu, Hg, Hg:Cu) single crystals. Well defined splitting of the Cr 2p core level has been found. The local magnetic moments of the Cr ions are responsible for the observed effect. Received 2 November 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号