首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In this paper we present a kinetic approach to the analysis of transient-state homogenous Ziegler-Natta polymerization activity data. The main features of the experimental data are discussed and fitted to transient kinetic models.  相似文献   

2.
(Butadiene)zirconocene is observed to exist as an equilibrium mixture of (s-cis-) and (s-trans4-C4H6)ZrCl2 isomers. The system adds a variety of unsaturated organic reagents to form metallacyclic (allyl)metallocene products. In some cases, a second equivalent of a reagent is taken up, which forms the basis of a variety of useful template coupling reactions of butadiene at the bent metallocene framework. The Lewis acid B(C6F5)3 adds to (butadiene)zirconocene and to a great variety of butadiene complexes of ansa-metallocenes and related systems to give zwitterionic metallocene-butadiene-borate betaines. Most of these systems are active homogeneous Ziegler-Natta olefin polymerization catalysts, that do not require additional activation. Catalyst activities are often in a similar range to those observed for other catalyst activation procedures used in this chemistry. In the case of the (butadiene)metallocene/B(C6F5)3 systems we can often observe the first olefin insertion step. This feature was utilized to carry out a variety of mechanistic studies of the essential carbon-carbon coupling steps that take place at such bent metallocene catalyst systems. Even reactions with the functionalized monomer methylmetacrylate could be followed in this way. Some chelate ligand late metal systems were also included in these studies. However, these systems mostly behaved differently, even in cases where some structural similarities were observed.  相似文献   

3.
Development of homogeneous metallocene catalysts for olefin polymerization has been briefly overviewed prior to detailed examination of the chemistry of non-Cp type homogeneous catalytic systems. In order to emphasize the structural characteristics of non-Cp catalysts, they were initially classified according to the coordination numbers of 4-7 and then further subclassified according to the ligand types. Over 100 line drawings and 200 references are utilized.  相似文献   

4.
This article reviews the recent progress of zirconium complexes for ethylene polymerization. Zirconium complexes are one of the most important types of catalysts for homogeneous ethylene polymerization. Polymerization behavior and polymer structure can be adjusted through the balancing of ligand structure. We surveyed the zirconium complexes synthesized from 2006 to early 2009 and summarize their comparative catalytic activities. Generally, the main factor observed is the steric bulk which on increasing reduces the catalytic activity. Electron count, electronic cloud, and inductive effect also influence the catalytic activity.  相似文献   

5.
MgCl2-supported TiCl3 catalysts, with and/or without electron donor modifier (internal Bi or external Be), were compared with rac-ethylenebis(indenyl)zirconium dichloride ( 1 ) activated with either MAO or the cation forming agent, triphenyl carbenium tetrakis(pentafluorophenyl)borate ( 2 ), with triethylalumium (TEA). The activities of the heterogeneous catalysts depend on the presence or absence of the Lewis base, were relatively insensitive to the temperature of polymerization, and produce poly(hexene) with molecular weights up to 106. The 1 /MAO catalyst has about five times higher activity at 50°C but is almost inactive at ?30°C; the overall activation energy is 12.4 kcal mol?1. In contrast, the activity for hexene polymerization by the 1/2 /TEA catalyst is actually slightly greater at lower temperature. The MW's of poly(hexene) obtained with the zirconocenium catalysts are only in the tens of thousands because of rapid β-hydride elimination by the electrophilic cationic Zr center. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
7.
8.
The role of titanium oxidation states in olefin polymerization activity for Ziegler-Natta (ZN) catalyst has been investigated using density functional calculations at B3LYP/LANL2DZ as well as extended LANL2DZ basis that includes diffuse and polarization functions for C, H and Cl. Using the simple [TiCl2CH3]n (n = +1, 0, −1) model catalyst systems, we could rationalize some of the well-known experimental facts with varying Ti oxidation states (+4, +3, +2) in the real ZN systems. Firstly, irrespective of Ti oxidation states, the activation barriers (Eact) for ethylene and syn propylene insertion in Ti-CH3 bond are comparable in accordance with experimental and modeling studies. Secondly, it was observed that Ti(IV) catalyst has the lowest Eact which progressively increase in the order Ti(IV) < Ti(III) < Ti(II) high spin < Ti(II) low spin catalysts in line with experimental and several modeling results. The effect of solvation on olefin insertion barriers are seen more prominent in case of Ti(IV) systems compared to other oxidation states.  相似文献   

9.
Ethylene polymerization was carried out by immobilization of rac-ethylenebis(1-indenyl)zirconium dichloride(Et(Ind)2 ZrCl2) and rac-dimethylsilylbis(1-indenyl)zirconium dichloride(Me2 Si(Ind)2 ZrCl2) preactivated with methylaluminoxane(MAO) on calcinated silica at different temperatures. Polymerizations of ethylene were conducted at different temperatures to find the optimized polymerization temperature for maximum activity of the catalyst. The Me2 Si bridge catalyst showed higher activity at the lower polymerization temperature compared to the Et bridge catalyst. The highest catalytic activities were obtained at temperatures about 50 °C and 70 °C for Me2 Si(Ind)2 ZrCl2 /MAO and Et(Ind)2 ZrCl2 /MAO catalysts systems, respectively. Inductively coupled plasma-atomic emission spectroscopy results and polymerization activity results confirmed that the best temperature for calcinating silica was about 450 °C for both catalysts systems. The melting points of the produced polyethylene were about 130 °C, which could be attributed to the linear structure of HDPE.  相似文献   

10.
The use of a polyethylene-based copolymer with dual functional groups (polyethylene-gr-2-tert-butyl amino ethyl methacrylate) as the support for TiCl4 catalyst in ethylene polymerization was studied. Different methods for treating the support were examined and treatment with BuMgCl was found to be the most effective. With the BuMgCl-modified support, a 12-run Plackett-Burman design was used to screen 11 factors in catalyst preparation. Statistical analysis of the results from this design identified significant factors with the amount of BuMgCl singled out to be the most important one for the four response variables of interest, Mg loading, Ti loading, catalyst activity per gram catalyst, and catalyst activity per gram Ti. © 1996 John Wiley & Sons, Inc.  相似文献   

11.
The ternary catalytic system AlBui 3-TiCl4-CCl4 initiates the cationic polymerization of isobutylene in toluene at room temperature, whereas the binary combinations of these components do not induce isobutylene polymerization. At low CCl4 concentrations, the polymerization rates decrease sharply with time, and the quantitative yield of the polymer is achieved at an excess of CCl4 with respect to the titanium and aluminum components. The molecular weights of the polymers range within 1300–4000, and the index of polydispersity, as a rule, does not exceed 2.7. The influence of the conditions of component mixing (order of addition, duration of exposure prior to addition of the third component) on the yield and molecular weight of the polymerization product was found. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 711–714, April, 1999.  相似文献   

12.
Factors affecting the particular shape of kinetic rate–time profiles in the polymerization of ethylene with a MgCl2-supported TiCl4 catalyst activated by Al(C2H5)3 have been investigated. Examination of the dependence of the polymerization rate on the concentration of Al(C2H5)3 resulted in a Langmuir–Hinshelwood rate law. Analysis of the polymerization rate as a function of the polymerization temperature gave about 46 kJ mol?1 for the overall activation energy. Examination of the rapid decay of the polymerization rate with time showed that this decay is represented better by a first-order decay law than by a second-order one. © 1993 John Wiley & Sons, Inc.  相似文献   

13.
烯烃高效催化剂及聚合与共聚合的研究   总被引:1,自引:0,他引:1  
伍青  林尚安 《高分子通报》2005,(4):35-41,22
为中山大学高分子研究所烯烃配位聚合研究室在高效Ziegler-Natta催化剂、茂金属催化剂烯烃聚合与共聚合方面部分研究工作的概述。重点叙述了催化剂的设计、过渡金属配合物配体结构及聚合条件对乙烯、丙烯、1-丁烯、丁二烯、苯乙烯等烯烃单体聚合及共聚合活性以及聚合产物结构和分子量的影响。  相似文献   

14.
The relation between composition of the one-phase titanium-based silica supported catalysts for gas-phase ethylene polymerization, and the ability of these catalysts to control the molecular weight of polymer using hydrogen has been studied. Halogen containing alkylaluminium compounds and alkoxy groups on titanium promote the chain transfer process. A significant polymerization rate lowering effect is caused by hydrogen. However, catalyst activity fully revives after hydrogen removal from the polymerization system. The proportion of active titanium was found to be 18±4% in the presence of hydrogen, and the value of propagation rate constant (kp) was calculated to be 190±45 L/mol.s. © 1993 John Wiley & Sons, Inc.  相似文献   

15.
The reaction of Li[closo-1-Me-1,2-C2B10H10] with cyclohexene oxide produced closo-1-Me-2-(2′-hydroxycyclohexyl)-1,2-C2B10H10 (1) in 86% yield. Decapitation of (1) with potassium hydroxide in refluxing ethanol gave the corresponding cage-opened potassium salt of the carborane anion, [nido-1-Me-2-(2′-hydroxycyclohexyl)-1,2-C2B9H10] (2) in 82% yield. Deprotonation of (2) with two equivalents of n-butyllithium in THF at −78 °C, followed by its further reaction with anhydrous MCl4 · 2THF (M = Ti, Zr) produced the corresponding d0-half-sandwich metallacarboranes, closo-1-M(Cl)-2-Me-3-(2′-σ-O-cyclohexyl)-η5-2,3-C2B9H9 (3 M = Zr; 4 M = Ti), in 59% and 51% yields, respectively. Reaction of Li[closo-1,2-C2B10H11] with Merrifield’s peptide resin (1%) in refluxing THF gave the ortho-carborane-functionalized polymer (5) in 88% yield. The corresponding closo-1-polystyryl-2-(2′-hydroxycyclohexyl)-1,2-C2B10H10 (6) was produced in 94% yield by refluxing a mixture of the lithium salt of (5) and cyclohexene oxide in THF for 2 days. Compound (6) was decapitated, deprotonated and then reacted with ZrCl4 · 2THF to produce a polymer-supported d0-half-sandwich metallacarborane closo-1-Zr(Cl)-2-polystyryl-3-(2′-σ-O-cyclohexyl)-η5-2,3-C2B9H9 (7) in 41% yield. Compounds (3) and (7), in the presence of MMAO-7 (13% ISOPAR-E), were found to catalyze the polymerization of ethylene and vinyl chloride in toluene to give high molecular weight PE (9.4 × 103 (Mw/Mn = 1.8)) and PVC (2.1 × 103 (Mw/Mn = 1.6)), respectively.  相似文献   

16.
Hyaluronidase (HAase) catalyzes multiple enzymatic polymerizations with controlling regio- and stereoselectivity perfectly. This behavior, that is, the single enzyme being effective for multireactions and retaining the enzyme catalytic specificity, is not usual, and hence, HAase is a supercatalyst. Various sugar oxazoline monomers prepared based on the concept "transition-state analogue substrate" were successfully polymerized and copolymerized with HAase catalysis, yielding natural and unnatural glycosaminoglycans.  相似文献   

17.
Co- and ter-polymerization of ethylene with Fischer-Tropsch derived olefins having odd carbon number and branched olefins are investigated. A method of preparation of a robust, high productivity Ziegler-Natta catalyst suitable for ethylene co-polymerization with Fischer Tropsch olefin is reviewed. In supporting titanium tetrachloride, an attempt was made to control the titanium oxidation state. The resulting experimental data were fitted to a sub-sites model that associates titanium oxidation state with catalyst activity.  相似文献   

18.
Metallocene alkyl cations for polymerization of olefins possess two active sites involved in migratory insertion. Site epimerization, with an inversion at the metal atom, is considered to be one of the major causes for break-down of the alternating propagation model, resulting in stereoerrors whenever the two catalytic sites have substantially different enantioface selectivities. Density functional theory has been used to determine the intrinsic reaction coordinate that connects the optimized minima and transition states of inversion in the parent ansa-zirconocene [{H2C(Cp)2}Zr-Pr]+ (Pr = n-propyl). These calculations yield a three-step reaction path for site epimerization. Starting from the pyramidal β-agostic complex, an activated rotation around the Zr-Pr bond first produces an α-agostic conformation. Continued rotation leads to an equivalent second α-agostic intermediate and then finally to the inverted β-agostic complex. The second step is rate-determining and proceeds through a planar three-coordinate transition state. In the case of [{H2C(Cp)2}Zr-iBu]+ (iBu = iso-butyl), the situation is more complicated, because there are several interconvertible α-, β- and γ-agostic intermediates, but the rate-limiting step is again an inversion process connecting two different α-agostic conformers with the alkyl group on opposite enantiosides. For both ansa-zirconocene catalysts, the computed free-energy barriers for epimerization are around 11-12 kcal/mol and almost independent of temperature, while those for insertion increase with temperature due to the entropic cost of association. According to the computational results for the isolated catalysts, insertion remains favored over epimerization for the experimentally relevant temperature range in the n-propyl case, whereas both processes are competitive in the iso-butyl case. Inclusion of bulk solvent effects by a continuum solvation model does not affect the results much, while explicit consideration of a coordinating counterion causes larger changes. The present model calculations on the role of site epimerization should thus be most relevant for propene polymerization with non-coordinating counterions.  相似文献   

19.
The syndiospecific propylene polymerizations catalyzed by isopropylidene(cyclopentadienyl)(fluorenyl)- and (2,2-dimethylpropylidene)(cyclopentadienyl)(fluorenyl)-zirconocenium ( 1 + and 2 +) have been investigated theoretically and compared with experimental observations. With the ab initio calculated structures for the transition state (TS) of 1 +(M)P and 2 +(M)P (M = propylene, P = 2-methylpentyl), their steric energies (E°) have been computed using MM2 force-field. The difference between steric energies E°(m) and E°(r) for the meso and racemic enchainment of propylene, respectively, is defined as the stereocontrol energy [δE°(m ? r)] for syndiotactic propagation. The δE°(m ? r) for the TS of 1 + (M)P is about 2.1 kcal/mol, the value is 1 kcal/mol greater for 2 +(M)P. The observed steric pentad distributions of the syndiotactic poly(propylene) obtained by these catalysts are consistent with smaller effective stereocontrol energy, which is about two-third as large as δE°(m ? r) values calculated for the MM2 optimized structure. Syndiotactic enchainment is favored over isotactic enchainment for all combinations of site configurations in the catalyst. α-Agostic interaction seems to enhance syndioselectivity, whereas γ-agostic interaction changes the stereoselectivity to meso enchainment. The mirror plane symmetry of the syndiotactic propagating species renders the stereoselectivity of the polymerization insensitive to reaction conditions. These catalysts are also highly regiospecific. © 1995 John Wiley & Sons, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号