首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The generating system of the differential algebra for invariant differential polynomials with two parametric curves is obtained. Conditions for the equivalence of two parametric curves families are given. We are also proved that the generating differential invariants of two parametric curves are independent. Finally, we reduce the SL(nR)-equivalent problem for ruled surfaces to that of parametric curves.  相似文献   

2.
We describe a family of polynomials discovered via a particular recursion relation, which have connections to Chebyshev polynomials of the first and the second kind, and the polynomial version of Pell's equation. Many of their properties are listed in Section 3. We show that these families of polynomials in the variable t satisfy certain second-order linear differential equations that may be of interest to mathematicians in conformal field theory and number theory. We also prove that these families of polynomials in the setting of Date–Jimbo–Kashiwara–Miwa algebras when multiplied by a suitable power of t are orthogonal with respect to explicitly described kernels. Particular cases lead to new identities of elliptic integrals (see Section 5).  相似文献   

3.
We construct three (large, reduced) incidence algebras whose semigroups of multiplicative functions, under convolution, are anti-isomorphic, respectively, to the semigroups of what we call partitional, permutational and exponential formal power series without constant term, in infinitely many variables x = (x1, x2,…), under plethysm. We compute the Möbius function in each case. These three incidence algebras are the linear duals of incidence bialgebras arising, respectively, from the classes of transversals of partitions (with an order that we define), partitions compatible with permutations (with the usual refinement order), and linear transversals of linear partitions (with the order induced by that on transversals). We define notions of morphisms between partitions, permutations and linear partitions, respectively, whose kernels are defined to be, in each case, transversals, compatible partitions and linear transversals. We introduce, in each case, a pair of sequences of polynomials in x of binomial type, counting morphisms and monomorphisms, and obtain expressions for their connection constants, by summation and Möbius inversion over the corresponding posets of kernels.  相似文献   

4.
We study representations of polynomials over a field K from the point of view of their expressive power. Three important examples for the paper are polynomials arising as permanents of bounded tree-width matrices, polynomials given via arithmetic formulas, and families of so called CNF polynomials. The latter arise in a canonical way from families of Boolean formulas in conjunctive normal form. To each such CNF formula there is a canonically attached incidence graph. Of particular interest to us are CNF polynomials arising from formulas with an incidence graph of bounded tree- or clique-width.We show that the class of polynomials arising from families of polynomial size CNF formulas of bounded tree-width is the same as those represented by polynomial size arithmetic formulas, or permanents of bounded tree-width matrices of polynomial size. Then, applying arguments from communication complexity we show that general permanent polynomials cannot be expressed by CNF polynomials of bounded tree-width. We give a similar result in the case where the clique-width of the incidence graph is bounded, but for this we need to rely on the widely believed complexity theoretic assumption #P?FP/poly.  相似文献   

5.
We show combinatorially that the higher-order matching polynomials of several families of graphs are d-orthogonal polynomials. The matching polynomial of a graph is a generating function for coverings of a graph by disjoint edges; the higher-order matching polynomial corresponds to coverings by paths. Several families of classical orthogonal polynomials—the Chebyshev, Hermite, and Laguerre polynomials—can be interpreted as matching polynomials of paths, cycles, complete graphs, and complete bipartite graphs. The notion of d-orthogonality is a generalization of the usual idea of orthogonality for polynomials and we use sign-reversing involutions to show that the higher-order Chebyshev (first and second kinds), Hermite, and Laguerre polynomials are d-orthogonal. We also investigate the moments and find generating functions of those polynomials.  相似文献   

6.
Laguerre-Sobolev polynomials are orthogonal with respect to an inner product of the form , where α>−1, λ?0, and , the linear space of polynomials with real coefficients. If dμ(x)=xαe−xdx, the corresponding sequence of monic orthogonal polynomials {Qn(α,λ)(x)} has been studied by Marcellán et al. (J. Comput. Appl. Math. 71 (1996) 245-265), while if dμ(x)=δ(x)dx the sequence of monic orthogonal polynomials {Ln(α)(x;λ)} was introduced by Koekoek and Meijer (SIAM J. Math. Anal. 24 (1993) 768-782). For each of these two families of Laguerre-Sobolev polynomials, here we give the explicit expression of the connection coefficients in their expansion as a series of standard Laguerre polynomials. The inverse connection problem of expanding Laguerre polynomials in series of Laguerre-Sobolev polynomials, and the connection problem relating two families of Laguerre-Sobolev polynomials with different parameters, are also considered.  相似文献   

7.
We use a geometric approach to obtain a recurrence relation for two families of biorthogonal polynomials associated to a nonsingular, strongly regular matrix M. We propose a “look-ahead procedure” for computing the biorthogonal polynomials when M has singular or ill-conditioned leading principal submatrices. These polynomials lead to two recursive triangular factorizations for the inverse of a nonsingular matrix M which is not necessarily strongly regular.  相似文献   

8.
We provide some new families of permutation polynomials of \({\mathbb {F}}_{q^{2n}}\) of the type \(x^rg(x^{s})\), where the integers rs and the polynomial \(g \in {\mathbb {F}}_q[x]\) satisfy particular restrictions. Some generalizations of known permutation binomials and trinomials that involve a sort of symmetric polynomials are given. Other constructions are based on the study of algebraic curves associated to certain polynomials. In particular we generalize families of permutation polynomials constructed by Gupta–Sharma, Li–Helleseth, Li–Qu–Li–Fu.  相似文献   

9.
In this paper we first solve a convolution integral equation involving product of the general class of polynomials and theH-function of several variables. Due to general nature of the general class of polynomials and theH-function of several variables which occur as kernels in our main convolution integral equation, we can obtain from it solutions of a large number of convolution integral equations involving products of several useful polynomials and special functions as its special cases. We record here only one such special case which involves the product of general class of polynomials and Appell's functionF 3. We also give exact references of two results recently obtained by Srivastavaet al [10] and Rashmi Jain [3] which follow as special cases of our main result.  相似文献   

10.
Isospectral deformations of differential operators with periodic coefficients are constructed by modifying a method due to Burchnall and Chaundy. If the commutant of a differential operator L of order at least two consists of polynomials in L, then L admits holomorphic families of isospectral deformations of every positive dimension. The methods are independent of the order of the operator L.  相似文献   

11.
In this paper, we characterize the d-symmetric d-orthogonal polynomials of Brenke type. We obtain two new families of polynomials and the moments of the corresponding d-dimensional vectors of linear functionals. Weights, providing integral representations for these moments, were also given.  相似文献   

12.
Let A, B, C denote rational numbers with AB ≠ 0 and m > n ≥ 3 arbitrary rational integers. We study the Diophantine equation APm(x) + Bpn(y) = C, in x, y ? , where {Pk(x)}I is one of the three classical continuous orthogonal polynomial families, i.e. Laguerre polynomials, Jacobi polynomials (including Gegenbauer, Legendre or Chebyshev polynomials) and Hermite polynomials. We prove that with exception of the Chebyshev polynomials for all such polynomial families there are at most finitely many solutions (x, y) ? 2 provided n > 4. The tools are besides the criterion [3], a theorem of Szeg— [14] on monotonicity of stationary points of polynomials which satisfy a second order Sturm-Liouville differential equation,
  相似文献   

13.
We describe and investigate a class of Markovian models based on a form of “dynamic occupancy problem” originating in statistical mechanics. The most fundamental of these gives rise to a transition-probability matrix over (N + 1) discrete states, which proves to have the Hahn polynomials as eigenvectors. The structure of this matrix, which is a convolution of two negative hypergeometric distributions, leads to a factorization into finite-difference sumoperators having forms analogous to the Erdelyi-Kober operators for the continuous variable. These make possible the exact solution of the corresponding eigenvalue problem and hence the spectral representation of the transition matrix. By taking suitable limits, further families of Markov processes can be generated having other classical polynomials as eigenvectors; these, like the polynomials, inherit their properties from the original Hahn system. The Meixner, Jacobi and Laguerre systems arise in this way, having their origin in variants of the basic model. In the last of these cases, the spectral resolution of the continuous transition kernel proves to be identical with Erdelyi's (1938) bilinear formula, which is thus both generalized and given a physical interpretation. Various symmetry and “duality” properties are explored and a number of interesting formulas are obtained as by-products. The use of statistical models to generate kernels, which are thereby guaranteed to be both positive and positive definite, appears to be mathematically fruitful, while the models themselves seem likely to have application to a variety of topics in applied probability.  相似文献   

14.
Quasidefinite sesquilinear forms for Laurent polynomials in the complex plane and corresponding CMV biorthogonal Laurent polynomial families are studied. Bivariate linear functionals encompass large families of orthogonalities such as Sobolev and discrete Sobolev types. Two possible Christoffel transformations of these linear functionals are discussed. Either the linear functionals are multiplied by a Laurent polynomial, or are multiplied by the complex conjugate of a Laurent polynomial. For the Geronimus transformation, the linear functional is perturbed in two possible manners as well, by a division by a Laurent polynomial or by a complex conjugate of a Laurent polynomial, in both cases the addition of appropriate masses (linear functionals supported on the zeros of the perturbing Laurent polynomial) is considered. The connection formulas for the CMV biorthogonal Laurent polynomials, its norms, and Christoffel–Darboux kernels, in all the four cases, are given. For the Geronimus transformation, the connection formulas for the second kind functions and mixed Christoffel–Darboux kernels are also given in the two possible cases. For prepared Laurent polynomials, i.e., of the form , , these connection formulas lead to quasideterminantal (quotient of determinants) Christoffel formulas for all the four transformations, expressing an arbitrary degree perturbed biorthogonal Laurent polynomial in terms of 2n unperturbed biorthogonal Laurent polynomials, their second kind functions or Christoffel–Darboux kernels and its mixed versions. Different curves are presented as examples, such as the real line, the circle, the Cassini oval, and the cardioid. The unit circle case, given its exceptional properties, is discussed in more detail. In this case, a particularly relevant role is played by the reciprocal polynomial, and the Christoffel formulas provide now with two possible ways of expressing the same perturbed quantities in terms of the original ones, one using only the nonperturbed biorthogonal family of Laurent polynomials, and the other using the Christoffel–Darboux kernels and its mixed versions, as well. Two examples are discussed in detail.  相似文献   

15.
Let be a measure in ? d obtained from adding a set of mass points to another measure . Orthogonal polynomials in several variables associated with can be explicitly expressed in terms of orthogonal polynomials associated with , so are the reproducing kernels associated with these polynomials. The explicit formulas that are obtained are further specialized in the case of Jacobi measure on the simplex, with mass points added on the vertices, which are then used to study the asymptotics kernel functions for .  相似文献   

16.
We prove a multivariate strengthening of Brenti?s result that every root of the Eulerian polynomial of type B is real. Our proof combines a refinement of the descent statistic for signed permutations with the notion of real stability—a generalization of real-rootedness to polynomials in multiple variables. The key is that our refined multivariate Eulerian polynomials satisfy a recurrence given by a stability-preserving linear operator.Our results extend naturally to colored permutations, and we also give stable generalizations of recent real-rootedness results due to Dilks, Petersen, and Stembridge on affine Eulerian polynomials of types A and C. Finally, although we are not able to settle Brenti?s real-rootedness conjecture for Eulerian polynomials of type D, nor prove a companion conjecture of Dilks, Petersen, and Stembridge for affine Eulerian polynomials of types B and D, we indicate some methods of attack and pose some related open problems.  相似文献   

17.
Let D and E be two real intervals. We consider transformations that map polynomials with zeros in D into polynomials with zeros in E. A general technique for the derivation of such transformations is presented. It is based on identifying the transformation with a parametrised distribution φ (x, µ), xE, µ ∈ D, and forming the bi-orthogonal polynomial system with respect to φ. Several examples of such transformations are given.  相似文献   

18.
We investigate properties of sets of functions comprising countably many elements An such that every function An is orthogonal to all polynomials of degrees less than n. We propose an effective method for solving Fredholm integral equations of the first kind whose kernels are generating functions for these sets of functions. We study integral equations used to solve some axially symmetric problems in physics. We prove that their kernels are generating functions that produce functions in the studied families and find these functions explicitly. This allows determining the elements of the matrices of systems of linear equations related to the integral equations for considering the physical problems.  相似文献   

19.
In this paper, we study a classes of oscillatory singular integral operators of nonconvolution type with phases more general than polynomials. We prove that such operators are bounded on Lp provided their kernels satisfy a very weak condition. In addition, we also study the related truncated oscillatory singular integral operators. Moreover, we present a class of unbounded oscillatory singular integral operators.  相似文献   

20.
In this paper, we derive an explicit expression for the parameter sequences of a chain sequence in terms of the corresponding orthogonal polynomials and their associated polynomials. We use this to study the orthogonal polynomials Kn(λ,M,k) associated with the probability measure dφ(λ,M,k;x), which is the Gegenbauer measure of parameter λ+1 with two additional mass points at ±k. When k=1 we obtain information on the polynomials Kn(λ,M) which are the symmetric Koornwinder polynomials. Monotonicity properties of the zeros of Kn(λ,M,k) in relation to M and k are also given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号