首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
For a connected graph G of order p≥2, a set SV(G) is a geodetic set of G if each vertex vV(G) lies on an x-y geodesic for some elements x and y in S. The minimum cardinality of a geodetic set of G is defined as the geodetic number of G, denoted by g(G). A geodetic set of cardinality g(G) is called a g-set of G. A connected geodetic set of G is a geodetic set S such that the subgraph G[S] induced by S is connected. The minimum cardinality of a connected geodetic set of G is the connected geodetic number of G and is denoted by gc(G). A connected geodetic set of cardinality gc(G) is called a gc-set of G. A connected geodetic set S in a connected graph G is called a minimal connected geodetic set if no proper subset of S is a connected geodetic set of G. The upper connected geodetic number is the maximum cardinality of a minimal connected geodetic set of G. We determine bounds for and determine the same for some special classes of graphs. For positive integers r,d and nd+1 with rd≤2r, there exists a connected graph G with , and . Also, for any positive integers 2≤a<bc, there exists a connected graph G such that g(G)=a, gc(G)=b and . A subset T of a gc-set S is called a forcing subset for S if S is the unique gc-set containing T. A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing connected geodetic number of S, denoted by fc(S), is the cardinality of a minimum forcing subset of S. The forcing connected geodetic number of G, denoted by fc(G), is fc(G)=min{fc(S)}, where the minimum is taken over all gc-sets S in G. It is shown that for every pair a,b of integers with 0≤ab−4, there exists a connected graph G such that fc(G)=a and gc(G)=b.  相似文献   

2.
For an oriented graph D, let ID[u,v] denote the set of all vertices lying on a u-v geodesic or a v-u geodesic. For SV(D), let ID[S] denote the union of all ID[u,v] for all u,vS. Let [S]D denote the smallest convex set containing S. The geodetic number g(D) of an oriented graph D is the minimum cardinality of a set S with ID[S]=V(D) and the hull number h(D) of an oriented graph D is the minimum cardinality of a set S with [S]D=V(D). For a connected graph G, let O(G) be the set of all orientations of G, define g(G)=min{g(D):DO(G)}, g+(G)=max{g(D):DO(G)}, h(G)=min{h(D):DO(G)}, and h+(G)=max{h(D):DO(G)}. By the above definitions, h(G)≤g(G) and h+(G)≤g+(G). In the paper, we prove that g(G)<h+(G) for a connected graph G of order at least 3, and for any nonnegative integers a and b, there exists a connected graph G such that g(G)−h(G)=a and g+(G)−h+(G)=b. These results answer a problem of Farrugia in [A. Farrugia, Orientable convexity, geodetic and hull numbers in graphs, Discrete Appl. Math. 148 (2005) 256-262].  相似文献   

3.
For every pair of vertices u,v in a graph, a u-v geodesic is a shortest path from u to v. For a graph G, let IG[u,v] denote the set of all vertices lying on a u-v geodesic. Let SV(G) and IG[S] denote the union of all IG[u,v] for all u,vS. A subset SV(G) is a convex set of G if IG[S]=S. A convex hull [S]G of S is a minimum convex set containing S. A subset S of V(G) is a hull set of G if [S]G=V(G). The hull number h(G) of a graph G is the minimum cardinality of a hull set in G. A subset S of V(G) is a geodetic set if IG[S]=V(G). The geodetic number g(G) of a graph G is the minimum cardinality of a geodetic set in G. A subset FV(G) is called a forcing hull (or geodetic) subset of G if there exists a unique minimum hull (or geodetic) set containing F. The cardinality of a minimum forcing hull subset in G is called the forcing hull number fh(G) of G and the cardinality of a minimum forcing geodetic subset in G is called the forcing geodetic number fg(G) of G. In the paper, we construct some 2-connected graph G with (fh(G),fg(G))=(0,0),(1,0), or (0,1), and prove that, for any nonnegative integers a, b, and c with a+b≥2, there exists a 2-connected graph G with (fh(G),fg(G),h(G),g(G))=(a,b,a+b+c,a+2b+c) or (a,2a+b,a+b+c,2a+2b+c). These results confirm a conjecture of Chartrand and Zhang proposed in [G. Chartrand, P. Zhang, The forcing hull number of a graph, J. Combin. Math. Combin. Comput. 36 (2001) 81-94].  相似文献   

4.
We apply the Five Functionals Fixed Point Theorem to verify the existence of at least three positive pseudo-symmetric solutions for the discrete three point boundary value problem, ?(g(?u(t-1)))+a(t))f(u(t))=0, for t∈{a+1,…,b+1} and u(a)=0 with u(v)=u(b+2) where g(v)=|v| p-2 v, p>1, for some fixed v∈{a+1,…,b+1} and σ=(b+2+v)/2 is an integer.  相似文献   

5.
A Steiner tree for a set S of vertices in a connected graph G is a connected subgraph of G with a smallest number of edges that contains S. The Steiner interval I(S) of S is the union of all the vertices of G that belong to some Steiner tree for S. If S={u,v}, then I(S)=I[u,v] is called the interval between u and v and consists of all vertices that lie on some shortest u-v path in G. The smallest cardinality of a set S of vertices such that ?u,vSI[u,v]=V(G) is called the geodetic number and is denoted by g(G). The smallest cardinality of a set S of vertices of G such that I(S)=V(G) is called the Steiner geodetic number of G and is denoted by sg(G). We show that for distance-hereditary graphs g(G)?sg(G) but that g(G)/sg(G) can be arbitrarily large if G is not distance hereditary. An efficient algorithm for finding the Steiner interval for a set of vertices in a distance-hereditary graph is described and it is shown how contour vertices can be used in developing an efficient algorithm for finding the Steiner geodetic number of a distance-hereditary graph.  相似文献   

6.
In this paper, we study the “triply” degenerate problem: bt(v)−Δg(v)+divΦ(v)=f on Q:=(0,TΩ, b(v(0,⋅))=b(v0) on Ω and “g(v)=g(a) on some part of the boundary (0,T)×∂Ω,” in the case of continuous nonhomogeneous and nonstationary boundary data a. The functions b,g are assumed to be continuous, locally Lipschitz, nondecreasing and to verify the normalization condition b(0)=g(0)=0 and the range condition R(b+g)=R. Using monotonicity and penalization methods, we prove existence of a weak renormalized entropy solution in the spirit of [K. Ammar, J. Carrillo, P. Wittbold, Scalar conservation laws with general boundary condition and continuous flux function, J. Differential Equations 228 (2006) 111-139].  相似文献   

7.
Sauer's lemma is extended to classes HN of binary-valued functions h on [n]={1,…,n} which have a margin less than or equal to N on all x∈[n] with h(x)=1, where the margin μh(x) of h at x∈[n] is defined as the largest non-negative integer a such that h is constant on the interval Ia(x)=[x-a,x+a]⊆[n]. Estimates are obtained for the cardinality of classes of binary-valued functions with a margin of at least N on a positive sample S⊆[n].  相似文献   

8.
The detour order of a graph G, denoted by τ(G), is the order of a longest path in G. A subset S of V(G) is called a Pn-kernel of G if τ(G[S])≤n−1 and every vertex vV(G)−S is adjacent to an end-vertex of a path of order n−1 in G[S]. A partition of the vertex set of G into two sets, A and B, such that τ(G[A])≤a and τ(G[B])≤b is called an (a,b)-partition of G. In this paper we show that any graph with girth g has a Pn+1-kernel for every . Furthermore, if τ(G)=a+b, 1≤ab, and G has girth greater than , then G has an (a,b)-partition.  相似文献   

9.
Let ga(t) and gb(t) be two positive, strictly convex and continuously differentiable functions on an interval (a, b) (−∞ a < b ∞), and let {Ln} be a sequence of linear positive operators, each with domain containing 1, t, ga(t), and gb(t). If Ln(ƒ; x) converges to ƒ(x) uniformly on a compact subset of (a, b) for the test functions ƒ(t) = 1, t, ga(t), gb(t), then so does every ƒ ε C(a, b) satisfying ƒ(t) = O(ga(t)) (ta+) and ƒ(t) = O(gb(t)) (tb). We estimate the convergence rate of Lnƒ in terms of the rates for the test functions and the moduli of continuity of ƒ and ƒ′.  相似文献   

10.
Let G=G(n) be a graph on n vertices with girth at least g and maximum degree bounded by some absolute constant Δ. Assign to each vertex v of G a list L(v) of colors by choosing each list independently and uniformly at random from all 2-subsets of a color set C of size σ(n). In this paper we determine, for each fixed g and growing n, the asymptotic probability of the existence of a proper coloring φ such that φ(v)∈L(v) for all vV(G). In particular, we show that if g is odd and σ(n)=ω(n1/(2g−2)), then the probability that G has a proper coloring from such a random list assignment tends to 1 as n. Furthermore, we show that this is best possible in the sense that for each fixed odd g and each ng, there is a graph H=H(n,g) with bounded maximum degree and girth g, such that if σ(n)=o(n1/(2g−2)), then the probability that H has a proper coloring from such a random list assignment tends to 0 as n. A corresponding result for graphs with bounded maximum degree and even girth is also given. Finally, by contrast, we show that for a complete graph on n vertices, the property of being colorable from random lists of size 2, where the lists are chosen uniformly at random from a color set of size σ(n), exhibits a sharp threshold at σ(n)=2n.  相似文献   

11.
Let G=(V,E) be a graph with V={1,2,…,n}. Define S(G) as the set of all n×n real-valued symmetric matrices A=[aij] with aij≠0,ij if and only if ijE. By M(G) we denote the largest possible nullity of any matrix AS(G). The path cover number of a graph G, denoted P(G), is the minimum number of vertex disjoint paths occurring as induced subgraphs of G which cover all the vertices of G.There has been some success with relating the path cover number of a graph to its maximum nullity. Johnson and Duarte [5], have shown that for a tree T,M(T)=P(T). Barioli et al. [2], show that for a unicyclic graph G,M(G)=P(G) or M(G)=P(G)-1. Notice that both families of graphs are outerplanar. We show that for any outerplanar graph G,M(G)?P(G). Further we show that for any partial 2-path G,M(G)=P(G).  相似文献   

12.
For a set A, let P(A) be the set of all finite subset sums of A. We prove that if a sequence B={b 1<b 2<⋯} of integers satisfies b 1≧11 and b n+1≧3b n +5 (n=1,2,…), then there exists a sequence of positive integers A={a 1<a 2<⋯} for which P(A)=ℕ∖B. On the other hand, if a sequence B={b 1<b 2<⋯} of positive integers satisfies either b 1=10 or b 2=3b 1+4, then there is no sequence A of positive integers for which P(A)=ℕ∖B.  相似文献   

13.
In this paper we show that if for an integer matrix A the universal Gröbner basis of the associated toric ideal IA coincides with the Graver basis of A, then the Gröbner complexity u(A) and the Graver complexity g(A) of its higher Lawrence liftings agree, too. In fact, if the universal Gröbner basis of IA coincides with the Graver basis of A, then also the more general complexities u(A,B) and g(A,B) agree for arbitrary B. We conclude that for the matrices A3×3 and A3×4, defining the 3×3 and 3×4 transportation problems, we have u(A3×3)=g(A3×3)=9 and u(A3×4)=g(A3×4)≥27. Moreover, we prove that u(Aa,b)=g(Aa,b)=2(a+b)/gcd(a,b) for positive integers a,b and .  相似文献   

14.
Linda Eroh 《Discrete Mathematics》2008,308(18):4212-4220
Let G be a connected graph and SV(G). Then the Steiner distance of S, denoted by dG(S), is the smallest number of edges in a connected subgraph of G containing S. Such a subgraph is necessarily a tree called a Steiner tree for S. The Steiner interval for a set S of vertices in a graph, denoted by I(S) is the union of all vertices that belong to some Steiner tree for S. If S={u,v}, then I(S) is the interval I[u,v] between u and v. A connected graph G is 3-Steiner distance hereditary (3-SDH) if, for every connected induced subgraph H of order at least 3 and every set S of three vertices of H, dH(S)=dG(S). The eccentricity of a vertex v in a connected graph G is defined as e(v)=max{d(v,x)|xV(G)}. A vertex v in a graph G is a contour vertex if for every vertex u adjacent with v, e(u)?e(v). The closure of a set S of vertices, denoted by I[S], is defined to be the union of intervals between pairs of vertices of S taken over all pairs of vertices in S. A set of vertices of a graph G is a geodetic set if its closure is the vertex set of G. The smallest cardinality of a geodetic set of G is called the geodetic number of G and is denoted by g(G). A set S of vertices of a connected graph G is a Steiner geodetic set for G if I(S)=V(G). The smallest cardinality of a Steiner geodetic set of G is called the Steiner geodetic number of G and is denoted by sg(G). We show that the contour vertices of 3-SDH and HHD-free graphs are geodetic sets. For 3-SDH graphs we also show that g(G)?sg(G). An efficient algorithm for finding Steiner intervals in 3-SDH graphs is developed.  相似文献   

15.
In this article, we consider uniqueness of positive radial solutions to the elliptic system Δu+a(|x|)f(u,v)=0, Δv+b(|x|)g(u,v)=0, subject to the Dirichlet boundary condition on the open unit ball in RN (N?2). Our uniqueness results applies to, for instance, f(u,v)=uqvp, g(u,v)=upvq, p,q>0, p+q<1 or more general cases.  相似文献   

16.
For a set A of nonnegative integers the representation functions R2(A,n), R3(A,n) are defined as the number of solutions of the equation n=a+a,a,aA with a<a, a?a, respectively. Let D(0)=0 and let D(a) denote the number of ones in the binary representation of a. Let A0 be the set of all nonnegative integers a with even D(a) and A1 be the set of all nonnegative integers a with odd D(a). In this paper we show that (a) if R2(A,n)=R2(N?A,n) for all n?2N−1, then R2(A,n)=R2(N?A,n)?1 for all n?12N2−10N−2 except for A=A0 or A=A1; (b) if R3(A,n)=R3(N?A,n) for all n?2N−1, then R3(A,n)=R3(N?A,n)?1 for all n?12N2+2N. Several problems are posed in this paper.  相似文献   

17.
We present here a method which allows to derive a nontrivial lower bounds for the least common multiple of some finite sequences of integers. We obtain efficient lower bounds (which in a way are optimal) for the arithmetic progressions and lower bounds less efficient (but nontrivial) for quadratic sequences whose general term has the form un=an(n+t)+b with (a,t,b)∈Z3, a?5, t?0, gcd(a,b)=1. From this, we deduce for instance the lower bound: lcm{12+1,22+1,…,n2+1}?0,32n(1,442) (for all n?1). In the last part of this article, we study the integer lcm(n,n+1,…,n+k) (kN, nN). We show that it has a divisor dn,k simple in its dependence on n and k, and a multiple mn,k also simple in its dependence on n. In addition, we prove that both equalities: lcm(n,n+1,…,n+k)=dn,k and lcm(n,n+1,…,n+k)=mn,k hold for an infinitely many pairs (n,k).  相似文献   

18.
Let f(x) denote a system of n nonlinear functions in m variables, mn. Recently, a linearization of f(x) in a box x has been suggested in the form L(x)=Ax+b where A is a real n×m matrix and b is an interval n-dimensional vector. Here, an improved linearization L(x,y)=Ax+By+b, xx, yy is proposed where y is a p-dimensional vector belonging to the interval vector y while A and B are real matrices of appropriate dimensions and b is a real vector. The new linearization can be employed in solving various nonlinear problems: global solution of nonlinear systems, bounding the solution set of underdetermined systems of equations or systems of equalities and inequalities, global optimization. Numerical examples illustrating the superiority of L(x,y)=Ax+By+b over L(x)=Ax+b have been solved for the case where the problem is the global solution of a system of nonlinear equations (n=m).  相似文献   

19.
An even-order three-point boundary value problem on time scales   总被引:1,自引:0,他引:1  
We study the even-order dynamic equation (−1)nx(Δ∇)n(t)=λh(t)f(x(t)), t∈[a,c] satisfying the boundary conditions x(Δ∇)i(a)=0 and x(Δ∇)i(c)=βx(Δ∇)i(b) for 0?i?n−1. The three points a,b,c are from a time scale , where 0<β(ba)<ca for b∈(a,c), β>0, f is a positive function, and h is a nonnegative function that is allowed to vanish on some subintervals of [a,c] of the time scale.  相似文献   

20.
We consider random self-adjoint Jacobi matrices of the form
(Jωu)(n)=an(ω)u(n+1)+bn(ω)u(n)+an−1(ω)u(n−1)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号