首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Capacitated Facility Location Problem (CFLP) is among the most studied problems in the OR literature. Each customer demand has to be supplied by one or more facilities. Each facility cannot supply more than a given amount of product. The goal is to minimize the total cost to open the facilities and to serve all the customers. The problem is $\mathcal{NP}$ -hard. The Kernel Search is a heuristic framework based on the idea of identifying subsets of variables and in solving a sequence of MILP problems, each problem restricted to one of the identified subsets of variables. In this paper we enhance the Kernel Search and apply it to the solution of the CFLP. The heuristic is tested on a very large set of benchmark instances and the computational results confirm the effectiveness of the Kernel Search framework. The optimal solution has been found for all the instances whose optimal solution is known. Most of the best known solutions have been improved for those instances whose optimal solution is still unknown.  相似文献   

2.
Facility location models form an important class of integer programming problems, with application in many areas such as the distribution and transportation industries. An important class of solution methods for these problems are so-called Lagrangean heuristics which have been shown to produce high quality solutions and which are at the same time robust. The general facility location problem can be divided into a number of special problems depending on the properties assumed. In the capacitated location problem each facility has a specific capacity on the service it provides. We describe a new solution approach for the capacitated facility location problem when each customer is served by a single facility. The approach is based on a repeated matching algorithm which essentially solves a series of matching problems until certain convergence criteria are satisfied. The method generates feasible solutions in each iteration in contrast to Lagrangean heuristics where problem dependent heuristics must be used to construct a feasible solution. Numerical results show that the approach produces solutions which are of similar and often better than those produced using the best Lagrangean heuristics.  相似文献   

3.
We consider a generalization of the well-known capacitated facility location problem with single source constraints in which customer demand contains a flexible dimension. This work focuses on providing fast and practically implementable optimization-based heuristic solution methods for very large scale problem instances. We offer a unique approach that utilizes a high-quality efficient heuristic within a neighborhood search to address the combined assignment and fixed-charge structure of the underlying optimization problem. We also study the potential benefits of combining our approach with a so-called very large-scale neighborhood search (VLSN) method. As our computational test results indicate, our work offers an attractive solution approach that can be tailored to successfully solve a broad class of problem instances for facility location and similar fixed-charge problems.  相似文献   

4.
This paper considers the Single Source Capacitated Facility Location Problem (SSCFLP). We propose a Scatter Search approach to provide upper bounds for the optimal solution of the problem. The proposed approach uses GRASP to initialize the Reference Set. Solutions of the Reference Set are combined using a procedure that consists of two phases: (1) the initialization phase and (2) the improvement phase. During the initialization phase each client is assigned to an open facility to obtain a solution that is then improved with the improvement phase. Also, a tabu search algorithm is applied. In order to evaluate the proposed approach we use different sets of test problems. According to the results obtained we observe that the method provides good quality solutions with reasonable computational effort.  相似文献   

5.
This paper proposes a scatter search-based heuristic approach to the capacitated clustering problem. In this problem, a given set of customers with known demands must be partitioned into p distinct clusters. Each cluster is specified by a customer acting as a cluster center for this cluster. The objective is to minimize the sum of distances from all cluster centers to all other customers in their cluster, such that a given capacity limit of the cluster is not exceeded and that every customer is assigned to exactly one cluster. Computational results on a set of instances from the literature indicate that the heuristic is among the best heuristics developed for this problem.  相似文献   

6.
We consider a mathematical model similar in a sense to competitive location problems. There are two competing parties that sequentially open their facilities aiming to “capture” customers and maximize profit. In our model, we assume that facilities’ capacities are bounded. The model is formulated as a bilevel integer mathematical program, and we study the problem of obtaining its optimal (cooperative) solution. It is shown that the problem can be reformulated as that of maximization of a pseudo-Boolean function with the number of arguments equal to the number of places available for facility opening. We propose an algorithm for calculating an upper bound for values that the function takes on subsets which are specified by partial (0, 1)-vectors.  相似文献   

7.
The capacitated facility location problem (CFLP) is a well-known combinatorial optimization problem with applications in distribution and production planning. It consists in selecting plant sites from a finite set of potential sites and in allocating customer demands in such a way as to minimize operating and transportation costs. A number of solution approaches based on Lagrangean relaxation and subgradient optimization has been proposed for this problem. Subgradient optimization does not provide a primal (fractional) optimal solution to the corresponding master problem. However, in order to compute optimal solutions to large or difficult problem instances by means of a branch-and-bound procedure information about such a primal fractional solution can be advantageous. In this paper, a (stabilized) column generation method is, therefore, employed in order to solve a corresponding master problem exactly. The column generation procedure is then employed within a branch-and-price algorithm for computing optimal solutions to the CFLP. Computational results are reported for a set of larger and difficult problem instances.  相似文献   

8.
Lagrangean techniques have been widely applied to the uncapacitated plant location problem, and in some cases they have proven to be successfull even when capacitated problems with additional constraints are taken into account. In our paper we study the application of these techniques to the capacitated plant location problem when the model considered is a pure integer one. Several lagrangean decompositions are considered and for some of them heuristic algorithms have been designed to solve the resulting lagrangean subproblems, the heuristics consisting of a two phase procedure. The first (location phase) defines a set of multipliers from the analysis of the dual LP relaxation, and makes a choice of the plants considering the resulting subproblems as a particular case of the general assignment problems. Several heuristics have been studied for this second phase, based either on a decomposition of knapsack type subproblems through a definition of a set of penalties, or of looking into the duality gap and trying to reduce it. Computational experience is reported.  相似文献   

9.
In this paper, a linear programming based heuristic is considered for a two-stage capacitated facility location problem with single source constraints. The problem is to find the optimal locations of depots from a set of possible depot sites in order to serve customers with a given demand, the optimal assignments of customers to depots and the optimal product flow from plants to depots. Good lower and upper bounds can be obtained for this problem in short computation times by adopting a linear programming approach. To this end, the LP formulation is iteratively refined using valid inequalities and facets which have been described in the literature for various relaxations of the problem. After each reoptimisation step, that is the recalculation of the LP solution after the addition of valid inequalities, feasible solutions are obtained from the current LP solution by applying simple heuristics. The results of extensive computational experiments are given.  相似文献   

10.
The Capacitated Facility Location Problem (CFLP) consists of locating a set of facilities with capacity constraints to satisfy the demands of a set of clients at the minimum cost. In this paper we propose a simple and effective heuristic for large-scale instances of CFLP. The heuristic is based on a Lagrangean relaxation which is used to select a subset of “promising” variables forming the core problem and on a Branch-and-Cut algorithm that solves the core problem. Computational results on very large scale instances (up to 4 million variables) are reported.  相似文献   

11.
The Capacitated Facility Location Problem (CFLP) is to locate a set of facilities with capacity constraints, to satisfy at the minimum cost the order-demands of a set of clients. A multi-source version of the problem is considered in which each client can be served by more than one facility. In this paper we present a reformulation of the CFLP based on Mixed Dicut Inequalities, a family of minimum knapsack inequalities of a mixed type, containing both binary and continuous (flow) variables. By aggregating flow variables, any Mixed Dicut Inequality turns into a binary minimum knapsack inequality with a single continuous variable. We will refer to the convex hull of the feasible solutions of this minimum knapsack problem as the Mixed Dicut polytope. We observe that the Mixed Dicut polytope is a rich source of valid inequalities for the CFLP: basic families of valid CFLP inequalities, like Variable Upper Bounds, Cover, Flow Cover and Effective Capacity Inequalities, are valid for the Mixed Dicut polytope. Furthermore we observe that new families of valid inequalities for the CFLP can be derived by the lifting procedures studied for the minimum knapsack problem with a single continuous variable. To deal with large-scale instances, we have developed a Branch-and-Cut-and-Price algorithm, where the separation algorithm consists of the complete enumeration of the facets of the Mixed Dicut polytope for a set of candidate Mixed Dicut Inequalities. We observe that our procedure returns inequalities that dominate most of the known classes of inequalities presented in the literature. We report on computational experience with instances up to 1000 facilities and 1000 clients to validate the approach.  相似文献   

12.
This paper describes an attribute based tabu search heuristic for the generalized minimum spanning tree problem (GMSTP) known to be NP-hard. Given a graph whose vertex set is partitioned into clusters, the GMSTP consists of designing a minimum cost tree spanning all clusters. An attribute based tabu search heuristic employing new neighborhoods is proposed. An extended set of TSPLIB test instances for the GMSTP is generated and the heuristic is compared with recently proposed genetic algorithms. The proposed heuristic yields the best results for all instances. Moreover, an adaptation of the tabu search algorithm is proposed for a variation of the GMSTP in which each cluster must be spanned at least once.  相似文献   

13.
In this paper, another version of the vehicle routing problem (VRP)—the open vehicle routing problem (OVRP) is studied, in which the vehicles are not required to return to the depot, but if they do, it must be by revisiting the customers assigned to them in the reverse order. By exploiting the special structure of this type of problem, we present a new tabu search heuristic for finding the routes that minimize two objectives while satisfying three constraints. The computational results are provided and compared with two other methods in the literature.  相似文献   

14.
In this paper, we analyze flexible models for capacitated discrete location problems with setup costs. We introduce a major extension with regards to standard models which consists of distinguishing three different points of view of a location problem in a logistics system. We develop mathematical programming formulations for these models using discrete ordered objective functions with some new features. We report on the computational behavior of these formulations tested on a randomly generated battery of instances.  相似文献   

15.
In this paper, we study uniform hard capacitated facility location problem. The standard LP for the problem is known to have an unbounded integrality gap. We present constant factor approximation by rounding a solution to the standard LP with a slight (1+ϵ) violation in the capacities.Our result shows that the standard LP is not too bad.Our algorithm is simple and more efficient as compared to the strengthened LP-based true approximation that uses the inefficient ellipsoid method with a separation oracle. True approximations are also known for the problem using local search techniques that suffer from the problem of convergence. Moreover, solutions based on standard LP are easier to integrate with other LP-based algorithms.The result is also extended to give the first approximation for uniform hard capacitated k-facility location problem violating the capacities by a factor of (1+ϵ) and breaking the barrier of 2 in capacity violation. The result violates the cardinality by a factor of 21+ϵ.  相似文献   

16.
Discrete facility location problems are attractive candidates for decomposition procedures since two types of decisions have to be performed: on the one hand the yes/no-decision where to locate the facilities, on the other hand the decision how to allocate the demand to the selected facilities. Nevertheless, Benders' decomposition seems to have a rather slow convergence behaviour when applied for solving location problems. In the following, a procedure will be presented for strengthening the Benders' cuts for the capacitated facility location problem. Computational results show the efficiency of the modified Benders' decomposition algorithm. Furthermore, the paretooptimality of the strengthened Benders' cuts in the sense of [Magnanti and Wong 1990] is shown under a weak assumption.This paper was written when the author was at the Institute for Operations Research, University of St. Gallen, Switzerland, and partly supported by Schweizerischer Nationalfond zur Förderung der wissenschaftlichen Forschung (Grant 12-30140.90).  相似文献   

17.
We present a multistart heuristic for the uncapacitated facility location problem, based on a very successful method we originally developed for the p-median problem. We show extensive empirical evidence to the effectiveness of our algorithm in practice. For most benchmarks instances in the literature, we obtain solutions that are either optimal or a fraction of a percentage point away from it. Even for pathological instances (created with the sole purpose of being hard to tackle), our algorithm can get very close to optimality if given enough time. It consistently outperforms other heuristics in the literature.  相似文献   

18.
In this paper, we present a cut-and-solve (CS) based exact algorithm for the Single Source Capacitated Facility Location Problem (SSCFLP). At each level of CS’s branching tree, it has only two nodes, corresponding to the Sparse Problem (SP) and the Dense Problem (DP), respectively. The SP, whose solution space is relatively small with the values of some variables fixed to zero, is solved to optimality by using a commercial MIP solver and its solution if it exists provides an upper bound to the SSCFLP. Meanwhile, the resolution of the LP of DP provides a lower bound for the SSCFLP. A cutting plane method which combines the lifted cover inequalities and Fenchel cutting planes to separate the 0–1 knapsack polytopes is applied to strengthen the lower bound of SSCFLP and that of DP. These lower bounds are further tightened with a partial integrality strategy. Numerical tests on benchmark instances demonstrate the effectiveness of the proposed cutting plane algorithm and the partial integrality strategy in reducing integrality gap and the effectiveness of the CS approach in searching an optimal solution in a reasonable time. Computational results on large sized instances are also presented.  相似文献   

19.
The clustered traveling salesman problem is an extension of the classical traveling salesman problem where the set of vertices is partitioned into clusters. The objective is to find a least cost Hamiltonian cycle such that the vertices of each cluster are visited contiguously and the clusters are visited in a prespecified order. A tabu search heuristic is proposed to solve this problem. This algorithm periodically restarts its search by merging two elite solutions to form a new starting solution (in a manner reminiscent of genetic algorithms). Computational results are reported on sets of Euclidean problems with different characteristics.  相似文献   

20.
Correction to: Journal of the Operational Research Society (2005) 56, 267–274. doi:10.1057/palgrave.jors.2601817  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号