首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sorption behavior of Sn(II) onto Haro river sand has been examined with respect to nature of electrolyte, agitation time, dosage of sorbent and concentration of sorbate. Maximum sorption (95.5%) has been achieved from 0.034M hydrochloric acid solution after equilibrating sorbate (2·10−5M) and sorbent (50 mg) for 120 minutes at aV/W ratio of 90 cm3·g−1. The kinetic data have been subjected to Morris-Weber and Lagergren equations. The kinetics of sorption proceeds a two stage process consisting of a relatively slow initial uptake followed by a much rapid increase in the sorption. The rate constant of intraparticle transport, Kd, comes out to be 8.75·10−8 mol·g−1·min−1/2 and the first order rate constant for sorption is 0.0416 min−1. The sorption data of Sn(II) onto Haro river sand followed Langmuir, Freundlich and Dubinin-Radushkevich (D-R) type isotherms. The Langmuir constant,Q, related to sorption capacity and,b, related to sorption energy are computed to be 10.6±1.1 μmol·g−1 and 1123±137 dm3·mol−1, respectively. The D-R isotherm yields the values ofC m=348±151 μmol·g−1 and β=−0.01044±0.0008 mol2·kJ−2 and ofE=6.9±0.3 kJ·mol−1. In all three isotherms correlation factor (γ) is ≥0.99. The influence of common anions and cations on the sorption has been investigated. Zn(II), Mg(II), oxalate, Pb(II), Mn(II) and tartrate reduce the sorption significantly whereas Fe(II) causes substantial increase in the sorption. It is essential that all ions causing a decrease in the sorption of Sn(II) must be absent from the sorptive solution otherwise low sorption yields would result.  相似文献   

2.
The adsorption capacities of commercial and Brazilian natural clays were evaluated to test their applications in wastewater control. We investigated the process of sorption of manganese(II) and cadmium(II) present in synthetic aqueous effluents, by calculating the adsorption isotherms at 298 K using batch experiments. The influence of temperature and pH on the adsorption process was also studied. Adsorption of metals was best described by a Langmuir isotherm, with values of Q 0 parameter, which is related to the sorption capacity, corresponding to 6.3 mg g− 1 for K-10/Cd(II), 4.8 mg g− 1 for K-10/Mn(II), 11.2 mg g− 1 for NT-25/Cd(II) and 6.0 mg g− 1 for NT-25/Mn(II). We observed two distinct adsorption mechanisms that may influence adsorption. At the first 5 min of interaction, a cation exchange mechanism that takes place at exchange sites located on (001) basal planes is predominant. This process is inhibited by low pH values. After this first and fast step, a second sorption mechanism can be related to formation of inner-sphere surface complexes, which is formed at edges of the clay. The rate constants and the initial sorption rates correlate positively with temperature in all studied systems, denoting the predominance of a physisorption process. The addition of complexing agents that are incorporated within the K10 structure, enhance metal uptake by the adsorbent. The results have shown that both Cd(II) and Mn(II) were totally retained from a 50 mg L− 1 solution when K10 grafted with ammonium pyrrolidinedithiocarbamate (APDC) was used as adsorbent.  相似文献   

3.
Sorption of tracer Am3+ to silicate particles was studied as a function of pcH (4 to 9) and of ionic strength [0.20M to 1.50M (NaClO4)] at 298 K. The sorption increased with increased pcH from 4 to 6 above which saturation was observed. The insensitivity of Am3+ sorption to increased ionic strength indicates inner-sphere complexation with the surface silicate sites. The effects of different complexing anions such as carbonate, acetate, oxalate, phosphate, citrate, EDTA and humic acid, on Am3+ sorption were investigated. Synergistic enhancement in Am3+ sorption was observed in the presence of phosphate (4≤pcH≤7) and acetate (4≤pcH≤5) ligands at 0.20M NaClO4. The presence of the other ligands inhibited Am3+ sorption in the order: EDTA > citrate > oxalate > carbonate. Am3+ sorption in the presence of HA (25.00 mg/l) increased in the pcH range of 4.0 to 5.5, then decreased. Increased ionic strength enhanced Am3+ sorption in the presence of 25.00 mg/l HA for 4≤pcH≤9. The sorption increased in the presence of a mixture of HA (25.00 mg/l) and phosphate (1.00·10−3M) as compared to that of HA (25.00 mg/l) alone. The presence of Fe3+ (1.00·10−4M) enhanced Am3+ sorption at pcH∼4 but suppressed it from pcH of 5 to 9; 1.00·10−4M of Ca2+ and of UO22+ ions had no effect on the sorption profile. On leave from Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai -400 085, India.  相似文献   

4.
The fate and transport of toxic metal ions and radionuclides in the environment is generally controlled by sorption reactions. The extent of sorption of divalent metal cations is controlled by a number of factors including cosorbing or complexing. In this work, the effects of pH, humic acid HA/Co(II) addition orders, ionic strength, concentration of HA, and foreign cations on the Co(II) sorption on γ-Al2O3 in the presence of HA were investigated. The sorption isotherms of Co(II) on γ-Al2O3 in the absence and presence HA were also studied and described by using S-type sorption model. The experimental results showed that the Co(II) sorption is strongly dependent on the pH values, concentration of HA, but independent of HA/Co(II) addition orders, ionic strength, and foreign cations in the presence of HA under our experimental conditions. The results also indicated that HA enhanced the Co(II) sorption at low pH, but reduced the Co(II) sorption at high pH. It was hypothesized that the significantly positive influence of HA at low pH on the Co(II) sorption on γ-Al2O3 was attributed to strong surface binding of HA on γ-Al2O3 and subsequently the formation of ternary surface complexes such as ≡S-OOC-R-(COO) x Co2−x . Chemi-complexation may be the main mechanism of the Co(II) sorption on γ-Al2O3 in the presence of HA.  相似文献   

5.
The present study characterises sorption of two pesticides, namely, paraquat (PQ) and 2,4-dichlorophenoxyacetic acid (2,4-D) by an Oscillatoria sp.-dominated cyanobacterial mat. Sorption of PQ onto the test mat was not significantly affected by the pH of the solution within the pH range 2–7. However, 2,4-D sorption was strongly influenced by the solution pH and was maximum at pH 2. Whereas PQ sorption increased with increase in temperature, 2,4-D sorption showed an opposite trend. The sorption of PQ and 2,4-D achieved equilibrium within 1 h of incubation, independent of concentration of pesticide and mat biomass in the solution. The pseudo-second-order kinetic model better defined PQ sorption than the pseudo-first-order model, whereas 2,4-D sorption was well defined by both the models. Sorption isotherms of both the pesticides showed L-type curve. Freundlich model more precisely defined PQ sorption than Langmuir model, thereby suggesting heterogeneous distribution of PQ binding sites onto the biomass surface. However, the Langmuir model more correctly defined 2,4-D sorption, thus, indicating homogeneous distribution of 2,4-D binding sites onto the biomass surface. The test biomass is a good sorbent for the removal of PQ because it could, independent of pH of the solution, sorb substantial amount of PQ (q max = 0.13 mmol g−1).  相似文献   

6.
The sorption of inorganic lead(II) on two cationic resins containing different complexing groups, the iminodiacetic Chelex 100 and the carboxylic Amberlite CG-50, was investigated. The Gibbs-Donnan model was used to describe and predict the sorption through the determination of the intrinsic complexation constants. These quantities, even though non-thermodynamic, characterize the sorption as being independent of experimental conditions. The sorption mechanism for metals on complexing resins was also studied by adding a competitive soluble ligand that shifts the sorption curves to higher pH. The ligand competes with the resin for complexation with the metal ion. Lead(II) is strongly sorbed on Chelex 100 through the formation of two complexes in the resin phase: MHL with log 10 β 111i =−0.3 and ML with log 10 β 111i =−3.7. The presence of the competitive ligand in solution allows for the determination of a third complex. Furthermore, on Amberlite CG-50 the sorption is rather strong and involves the formation of the complex ML, in more acidic solution, with log 10 β 110i =−2.0. In the presence of the ligand PyDA, the ML(OH) complex was characterized by log 10 β 11−1i =−5.6. In all the experiments the hydrolysis reactions in the aqueous phase are considered quantitatively.  相似文献   

7.
The sorption behavior of a newly synthesized silica gel sorbent with thioetheric sites (STS) towards microgram levels of Au(III), Pt(IV) and Pd(II) was studied. Au(III) is quantitatively (>95%) sorbed in the pH region of 1–9. The sorption of Pt(IV) starts at pH 1 and does not exceed 25% in the entire pH region examined. The sorption of Pd(II) starts at pH 7 and reaches 80% at pH 9. The sorption of Au(III) on STS at pH 1 is not affected by milligram amounts of Ni(II), Zn(II), Fe(III), Cu(II), Pb(II), Cd(II) or Co(II). Au(III) is quantitatively eluted with a 5% aqueous solution of thiourea. The adsorption capacity of STS towards Au(III) is 195 mg g−1. The detection limit (DL) of Au(III) (3σ, n = 9) is 25 ng mL−1. The RSD at a level of 10 × DL is about 2%. Solid-phase extraction of trace amounts of Au(III) on the STS sorbent, followed by its flame AAS determination in the eluate was applied to the determination of gold in geological samples. The results obtained for the gold content in the samples were in good agreement with those of the ICP-AES analysis.  相似文献   

8.
Titanium dioxide nanoparticles were employed for the sorption of Ge(IV) ions from aqueous solution. The process was studied in detail by varying the sorption time, pH, and temperature. The sorption process was found to be fast, equilibrium was reached within 3 min. A maximum sorption could be achieved from solution when the pH ranges between 4.0 and 11.0. Sorbed Ge(IV) ions can be completely desorbed with 2 mL of 0.3 mol L−1 K3PO4-1.0 mol L−1 H2SO4 mixture solution. The kinetic experimental data properly correlate with the second-order kinetic model (k 2 = 0.88 g mg−1 min−1 (25°C)), Reichenberg equation and Morris-Weber model. The estimated E a for Ge(IV) adsorption on nano-TiO2 was 19.66 kJ mol−1. The overall rate process appears to be influenced by intra-particle diffusion. The sorption data could be well interpreted with the Langmuir and Dubinin-Radushkevich (D-R) type sorption isotherms. The D-R parameters were calculated to be K = −0.00321 mol2 kJ−2, q m = 0.59 mmol g−1 and E = 12.48 kJ mol−1 at room temperature. Furthermore, the thermodynamic parameters were also determined, and the ΔH 0 and ΔG 0 values indicated a spontaneous exothermic behavior.  相似文献   

9.
Microwave digestion and isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-SFMS) has been applied to the determination of Pb in rice flour. In order to achieve highly precise determination of low concentrations of Pb, the digestion blank for Pb was reduced to 0.21 ng g−1 after optimization of the digestion conditions, in which 20 mL analysis solution was obtained after digestion of 0.5 g rice flour. The observed value of Pb in a non-fat milk powder certified reference material (CRM), NIST SRM 1549, was 16.8 ± 0.8 ng g−1 (mean ± expanded uncertainty, k = 2; n = 5), which agreed with the certified value of 19 ± 3 ng g−1 and indicated the effectiveness of the method. Analytical results for Pb in three brown rice flour CRMs, NIST SRM 1568a, NIES CRM 10-a, and NIES CRM 10-b, were 7.32 ± 0.24 ng g−1 (n = 5), 1010 ± 10 ng g−1 (n = 5), and 1250 ± 20 ng g−1 (n = 5), respectively. The concentration of Pb in a candidate white rice flour reference material (RM) sample prepared by the National Metrology Institute of Japan (NMIJ) was observed to be 4.36 ± 0.28 ng g−1 (n = 10 bottles). Figure Digestion blank of Pb was carefully reduced to approximately 0.2 ng g-1 which permitted the highly precise determination of Pb at low ng g-1 level in foodstuff samples by ID-SFMS  相似文献   

10.

Abstract  

This article proposes a simple and fast method of In(III) determination in the presence of Cd(II) and Pb(II). The catalytic activity of N-methylthiourea was used in the In(III) electroreduction, which also had a slight effect on the electroreduction process of Cd(II) and Pb(II). By applying square wave voltammetry it was possible to determine 3 × 10−7 mol dm−3 In(III) in the presence of 5 × 10−5 mol dm−3 Cd(II) and 1 × 10−4 mol dm−3 Pb(II) in 5 mol dm−3 NaClO4 at pH 2. The calibration curve for In(III) was linear from 3 × 10−7 to 5 × 10−4 mol dm−3. The relative standard deviation for In(III) determination was about 3.0%.  相似文献   

11.
Removal of uranium(VI) ions from acetate medium in aqueous solution was investigated using Lewatit TP260 (weakly acidic, macroporous-type ion exchange resin with chelating aminomethylphosphonic functional groups) in batch system. The parameters that affect the uranium(VI) sorption, such as contact time, solution pH, initial uranium(VI) concentration, adsorbent dose and temperature have been investigated. Results have been analyzed by Langmuir and Freundlich isotherm; the former was more suitable to describe the sorption process. The moving boundary particle diffusion model only fits the initial metal adsorption on the resin. The rate constant for the uranium sorption by Lewatit TP260 was 0.441 min−1 from the first order rate equation. The total sorption capacity was found to be 58.33 mg g−1 under optimum experimental conditions. Thermodynamic parameters (ΔH = 61.74 kJ/mol; ΔS = 215.3 J/mol K; ΔG = −2.856 kJ/mol) showed the adsorption of an endothermic process and spontaneous nature, respectively.  相似文献   

12.
The uptake of Zn(II)-SCN complex onto polyurethane foam (PUF) has been investigated in detail with respect to different composition and variable concentration of electrolyte, zinc, thiocyanate ions and PUF, and equilibration time. The sorption data followed both Langmuir and Dubinin-Radushkevich (D-R) sorption isotherms over the entire concentration range of zinc investigated whereas Freundlich sorption isotherm is obeyed upto 13.6.10-3M concentration. The Langmuir constants Q = 202±7 mmole.g-1 and of b = (1.78±0.31.104 dm3.mole-1 and of D-R paraneter X m = 493±1 mmole.g-1, b = activity coefficient = -0.028±0.0002 and of sorption energy E = 13.2±0.5 kJ.mole-1 and Freundlich constants 1/n = 0.42±0.03 and c m = 6.47±1.7 mmole.g-1 were evaluated. The influence of temperature variation on sorption have yielded DH = -77.5±2.9 kJ.mole-1, DS = -5±0.09 J.mole-1.K-1 and DG = -6.67±0.05 kJ.mole-1. The effect of common anions and cations on the sorption has been examined. Sulphate, ascorbate and bromide ions enhances the sorption to some extent whereas nitrite, Pb(II), Fe(III), Al(III), Cu(II) and Co(II) decrease to sorption significantly. A possible mechanism has been envisaged for Zn(II)-SCN sorption onto PUF.  相似文献   

13.
Two series of activated carbon have been prepared by chemical activation of Amygdalus Scoparia shell with phosphoric acid or zinc chloride for the removal of Pb(II) ions from aqueous solutions. Several methods were employed to characterize the active carbon produced. The surface area was calculated using the standard Brunauer-Emmet-Teller method. The microstructures of the resultant activated carbon were observed by scanning electron microscopy. The chemical composition of the surface resultant activated carbon was determined by Fourier transform infrared spectroscopy. In the batch tests, the effect of pH, initial concentration, and contact time on the adsorption were studied. The data were fitted with Langmuir and Freundlich equations to describe the equilibrium isotherms. The maximum adsorption capacity of Pb(II) on the resultant activated carbon was 36.63 mg g−1 with H3PO4 and 28.74 mg g−1 with ZnCl2. To regenerate the spent adsorbents, desorption experiments were performed using 0.25 mol L−1 HCl. Here we propose that the activated carbon produced from Amygdalus Scoparia shell is an alternative low-cost adsorbent for Pb(II) adsorption.  相似文献   

14.
Two chitosan hydrogels (prepared by NaOH neutralization and by polyphosphate ionotropic gelation) have been tested in the dry state for Pd(II) and Pt(IV) sorption at pH 2. Similar sorption isotherms with maximum sorption capacities close to 190 mg Pd g−1 and 235 mg Pt g−1 were achieved. The sorption mechanism involves electrostatic attraction of the chloro-anionic species onto protonated amine groups; the drastic decrease of sorption capacity with the addition of chloride ions supports this hypothesis. SEM-EDAX analysis suggests that sorption proceeds, in kinetic terms, through a shrinking core mechanism. Metal ions can diffuse throughout all the sorbent volume. The main differences between the sorbents are revealed by kinetics. The hydrogels prepared by ionotropic gelation in polyphosphate (C-PPh) allows reaching equilibrium much faster than the hydrogels prepared by the neutralization process (C-NaOH). While for C-PPh sorbent the chemical reaction rate seems to control sorption profiles, in the case of C-NaOH a combination of mechanisms including intraparticle diffusion resistance controls uptake kinetics. Metal desorption from loaded sorbents is possible using thiourea alone or in association with HCl solutions. The recycling of the sorbents is possible but for a limited number of cycles.  相似文献   

15.
Synthesis of small oligopeptide brushes (oligo(S-benzyl-l-cysteine)) onto polyelectrolyte functionalized silica microparticles was developed. Poly(vinyl amine) (PVAm) adsorbed from salt-free and KCl 10−1 mol L−1 aqueous solution onto silica microparticles was chemically and naturally cross-linked by epichlorohydrin and CO2, respectively. After the adsorption of PVAm onto microporous silica particles and stabilization by cross-linking, five repeated coupling reactions of Boc-S-benzyl-l-cysteine were performed. To test the protein interactions with the newly designed surface, human serum albumin (HSA) has been selected as a model protein. X-ray photoelectron spectroscopy, total organic carbon, potentiometric and polyelectrolyte titrations, and electrokinetic analysis were employed to obtain information about the polyelectrolyte adsorption and the amount of the amino acid S-benzyl-l-cysteine that was covalently bound to the solid surface and for determination of the protein amount adsorbed onto functionalized surface. The amount of HSA adsorbed onto modified silica microparticles decreased in order: silica/PVAm-cross-linked (silica/PVAm-C) (8.00 mg g−1) > silica/PVAm-C/S-benzyl-l-cysteine (6.34 mg g−1) > silica (4.86 mg g−1) > silica/PVAm-C/(S-benzyl-l-cysteine)5 (1.86 mg g−1).  相似文献   

16.
The sorption of anions H2PO4 , HPO4 2−, PO4 3−, [Fe(CN)6]3−, and [Fe(CN)6]4− from aqueous solutions on the surface of FeIII and ZrIV oxyhydroxide hydrogels freshly precipitated at pH 4–13 was studied. The region of sorbate concentrations was from 0.00025 to 0.06 mol L−1. The plots of the anion uptakes vs. their equilibrium concentrations are represented by isotherms of the first type, which are well described by the Langmuir equation if the quantity of the amount adsorbed is expressed as mol-site g−1. The maximum uptakes and constants of the Langmuir equation were calculated. The phosphate anions occupy the same number of sorption sites on the sorbents precipitated at different pH. The average specific content of sorption sites for the ferro- and zirconogels in the metastability period is independent of the pH of their precipitation, being 3.1·10−3 and 3.2·10−3 mol-site g−1, respectively. The [Fe(CN)6]3− and [Fe(CN)6]4− anions are sorbed only on the positively charged sites of the hydrogels and occupy not more than 2·10 mol-site g−1 in the studied interval of pH of precipitation. __________ Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1736—1741, August, 2005.  相似文献   

17.
Sorption behavior of Am<Superscript>3+</Superscript> on suspended pyrite   总被引:1,自引:1,他引:0  
Sorption behavior of 241Am (~10−9 M) on naturally occurring mineral pyrite (particle size: ≤70 μm) has been studied under varying conditions of pH (2–11), and ionic strength (0.01–1.0 M (NaClO4)). The effects of humic acid (2 mg/L), other complexing anions (1 × 10−4 M CO3 2−, SO4 2−, C2O4 2− and PO4 3−), di- and trivalent metal ions (1 × 10−3 M Mg2+, Ca2+ and Nd3+) on sorption behavior of Am3+ at a fixed ionic strength (I = 0.10 M (NaClO4)) have been studied. The sorption of 241Am on pyrite increased with pH from 2.8 (84%) to 8.1 (97%). The sorption of 241Am decreased with ionic strength at low pH values (2 ≤ pH ≤ 4), but was insensitive in the pH range of 4–10, suggesting the formation of outer-sphere complexes on pyrite surface at lower pH, and inner-sphere complexes at higher pH values. The sorption of 241Am increased in the presence of (i) humic acid (5 < pH < 7.5), and (ii) C2O4 2− (2 < pH < 3). By contrast, other complexing anions such as (carbonate, phosphate, and sulphate) showed negligible influence on 241Am sorption. The presence of Mg2+, Ca2+ ions showed marginal effect on the sorption profile of 241Am; while the presence of Nd3+ ion suppressed its sorption significantly under the conditions of present study. The sorption of 241Am on pyrite decreased with increased temperature indicating an exothermic process.  相似文献   

18.
Two types of chelating sorbents with different types of addition of iminodipropionate groups to a polymeric matrix were synthesized: carboxyethylated aminopolystyrene (sorbent 1) based on linear polystyrene and carboxyethylaminomethylpolystyrene (sorbent 2) based on the copolymer of styrene and divinylbenzene. The ionization constants and concentrations of functional groups of the sorbents (exchange capacity for hydrogen ions) were determined. The sorbents exhibit high selectivity for copper(II) ions with the maximum of sorption from ammonia—acetate buffer solutions lying in a range of pH 5.0–7.5. The time needed for a solution of copper(II)—sorbent system with continuous stirring to reach exchange equilibrium is 3.5 and 2 h for sorbents 1 and 2, respectively. The exchange capacity for copper(II) ions is 2.54 and 0.10 mmol g−1, respectively. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 800–806, May, 2006.  相似文献   

19.
Chitosan was modified by grafting 2-pyridyl-ethyl moieties on the biopolymer backbone for the synthesis of a Platinum Group Metal (PGM) sorbent. The sorbent was tested for Pd(II) and Pt(IV) sorption from HCl solutions. Stable for HCl concentrations below 0.5 M, the sorbent reached sorption capacities as high as 3.2 and 2.6 mmol metal g−1 for Pd(II) and Pt(IV), respectively. Metal sorption mainly proceeds by electrostatic attraction in acidic solutions, though a contribution of complexation mechanism cannot be totally rejected. The resistance to intraparticle diffusion is the main controlling mechanism for uptake kinetics. While agitation speed has a limited effect on kinetics, metal concentration and sorbent dosage have a greater effect on the kinetic profiles. The intraparticle diffusivity varies between 3 × 10−11 and 4.5 × 10−10 m2 min−1. Thiourea (combined with HCl solution) is used for Pd(II) and Pt(IV) desorption. The resin could be desorbed and recycled for a minimum of five cycles maintaining high efficiencies of sorption and desorption.  相似文献   

20.
Cellulose is a linear 1,4-β-glucan polymer where the units are able to form highly ordered structures, as a result of extensive interaction through intra- and intermolecular hydrogen bonding of the three hydroxyl groups in each cellulose unit. Alkali has a substantial influence on morphological, molecular and supramolecular properties of cellulose II polymer fibres causing changes in crystallinity. Lyocell fibres pre-treated with 0.0, 2.0, and 4.0 mol dm−3 aqueous NaOH solution were dyed with hydrolyzed reactive dyes that had different molecular shapes and sizes. Overall exhaustion (q e), value of K, and −ΔG increased for lyocell samples pre-treated with aqueous NaOH solution in the following order: 2.0 > 4.0 > 0.0 mol dm−3 NaOH. The same trends were observed for colour strength (K/S) values of the dyeings. Pre-treatment of lyocell with 2.0 mol dm−3 NaOH creates the substrate that achieves the most thermodynamically favourable system for sorption of hydrolyzed reactive dyes, as at this concentration crystallinity decreases (with respect to 0.0 mol dm−3 NaOH treated lyocell) to afford higher sorption; however, at higher alkali concentrations the macro-sorbent forms a compacted unit that limits diffusion within the sorbent interior. Molecular size of the sorbate dye has a significant effect on the sorption process: for the largest dye structure the sorption isotherm is most closely correlated to a Langmuir isotherm; as the size of the dye decreases correlation to a Langmuir isotherm is observed, but with good correlation to the Freundlich isotherm; as the size of the dye is decreased further sorption is more typical of a Freundlich isotherm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号