首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes the peristaltic motion of a non-Newtonian fluid in a channel having compliant boundaries. Constitutive equations for a Maxwell fluid have been used. Perturbation method has been used for the analytic solution. The influence of pertinent parameters is analyzed. Comparison of the present analysis of Maxwell fluid is made with the existing results of viscous fluid.  相似文献   

2.
The movement of a horizontal vortex pair through an inhomogeneous fluid is considered. The problem is formulated first for the case when the ambient fluid is uniform, the fluid moving with the vortex pair has a different density, and the motion is supposed laminar and inviscid. An approximate solution is obtained, which predicts that the distance between the vortices stays constant and the vortices accelerate at a constant rate. This solution is then applied to motion in a stratified atmosphere and it is found that the vortices oscillate vertically with a frequency and amplitude depending on the initial conditions and the stratification. Finally, approximate equations are constructed to describe the effects of turbulent entrainment into the fluid moving with the vortex pair, and an estimate of the damping is obtained.  相似文献   

3.
In the present paper, a liquid (or melt) film of relatively high temperature ejected from a vessel and painted on the moving solid film is analyzed by using the second-order fluid model of the non-Newtonian fluid. The thermocapillary flow driven by the temperature gradient on the free surface of a Newtonian liquid film was discussed before. The effect of rheological fluid on thermocapillary flow is considered in the present paper. The analysis is based on the approximations of lubrication theory and perturbation theory. The equation of liquid height and the process of thermal hydrodynamics of the non-Newtonian liquid film are obtained, and the case of weak effect of the rheological fluid is solved in detail.  相似文献   

4.
《Quaestiones Mathematicae》2013,36(1):137-151
Abstract

In this paper, the steady boundary layer flow of a non-Newtonian fluid over a nonlinear stretching sheet is investigated. The Sisko fluid model, which is combination of power-law and Newtonian fluids in which the fluid may exhibit shear thinning/thickening behaviors, is considered. The boundary layer equations are derived for the two-dimensional flow of an incompressible Sisko fluid. Similarity transformations are used to reduce the governing nonlinear equations and then solved analytically using the homotopy analysis method. In addition, closed form exact analytical solutions are provided for n = 0 and n = 1. Effects of the pertinent parameters on the boundary layer flow are shown and solutions are contrasted with the power-law fluid solutions.  相似文献   

5.
The linear stability problem of the rotational motion of a rigid body around a fixed point containing an inner cavity filled up with an ideal fluid is considered. In this paper, we also assume that the fluid is rotating. The effect of the angular velocities of the rigid body and the fluid in the stability problem is studied. The case of a cavity ellipsoidal is presented in detail.  相似文献   

6.
分析在平行自由流动的非牛顿黏弹性导电流体中,连续平展表面移动时的稳态流和热传递特性,该流动处于横向均匀磁场作用下.以二阶流体构建它的本构方程,得到了速度分布和温度断面图的数值结果.讨论了诸如黏弹性参数、磁场参数和Prandtl数等不同物理参数对诸种动量和热传递特性的影响,并给出相关图示.  相似文献   

7.
A method for solving problems when flows with dissimilar Bernoulli constants interact is proposed. The method is used to investegate the problem of a steady plane-parallel flow of an ideal incompressible fluid around a point source from which a fluid, with a density and overall pressure, differing from the corresponding free-stream values, enters. Calculations, carried out over the whole range of variation of the governing parameter, characterizing the energy of the fluid entering from the source, demonstrate the effectiveness of the method.  相似文献   

8.
The paper examines the slow motion of a micropolar fluid produced by the relative motion of a solid sphere to an inside porous sphere. The result extends the Cunningham’s problem to micropolar fluid when the inner sphere is porous with prescribed radial suction/injection velocity at the surface of the sphere. The result can also be taken as an extension of the work of Ramkissoon and Majumdar when the fluid is bounded at a radiusr=b (b>a) but the solid sphere is replaced by a porous sphere. The force experienced by the inner sphere has been calculated and particular cases of interest have been deduced.  相似文献   

9.
The present study investigates the channel flow of a third order fluid. The fluid is electrically conducting in the presence of a magnetic field applied transversely to the porous walls of a channel. Expression for velocity is developed by an analytic method, namely the homotopy analysis method (HAM). Convergence of the obtained solution is properly checked. The feature of the analytic solution as function of the physical parameters of the problem are discussed with the help of graphs. It is observed that unlike the flow of second grade fluid, the obtained solution for a third order fluid is non-similar. Also, the behavior of Hartmann number on the velocity is different to that of the Reynold's number.  相似文献   

10.
The internal flow of a micropolar fluid inside a circular cylinder which is subject to longitudinal and torsional oscillations is investigated. Analytical expressions of the fluid velocity and micro-rotation are obtained. Explicit expressions of the shear stresses and drag force acting at the wall of the cylinder are derived as well. A numerical analysis followed to examine the effect of the micropolar fluid on the two components of the velocity field through graphical curves. In addition, the magnitude of the tangential drag is computed and compared with the case of a classical fluid.  相似文献   

11.
This paper studies the dynamics of an incompressible fluid driven by gravity and capillarity forces in a porous medium. The main interest is the stabilization of the fluid in Rayleigh-Taylor unstable situations where the fluid lays on top of a dry region. An important feature considered here is that the layer of fluid is under an impervious wall. This physical situation has been widely study by mean of thin film approximations in the case of small characteristic high of the fluid considering its strong interaction with the fixed boundary. Here, instead of considering any simplification leading to asymptotic models, we deal with the complete free boundary problem. We prove that, if the fluid interface is smaller than an explicit constant, the solution is global in time and it becomes instantly analytic. In particular, the fluid does not form drops in finite time. Our results are stated in terms of Wiener spaces for the interface together with some non-standard Wiener-Sobolev anisotropic spaces required to describe the regularity of the fluid pressure and velocity. These Wiener-Sobolev spaces are of independent interest as they can be useful in other problems. Finally, let us remark that our techniques do not rely on the irrotational character of the fluid in the bulk and they can be applied to other free boundary problems.  相似文献   

12.
The boundary layer flow of a second grade fluid over a permeable stretching surface with arbitrary velocity and appropriate wall transpiration is investigated. The fluid is electrically conducting in the presence of a constant applied magnetic field. An exact solution to the nonlinear flow problem is presented.  相似文献   

13.
This paper deals with the study of the MHD flow of non-Newtonian fluid on a porous plate. Two exact solutions for non-torsionally generated unsteady hydromagnetic flow of an electrically conducting second order incompressible fluid bounded by an infinite non-conducting porous plate subjected to a uniform suction or blowing have been analyzed. The governing partial differential equation for the flow has been established. The mathematical analysis is presented for the hydromagnetic boundary layer flow neglecting the induced magnetic field. The effect of presence of the material constants of the second order fluid on the velocity field is discussed.  相似文献   

14.
15.
An axisymmetric, elastic pipe is filled with an incompressible fluid and is immersed in a second, coaxial rigid pipe which contains the same fluid. A pressure pulse in the outer fluid annulus deforms the elastic pipe which invokes a fluid motion in the fluid core. It is the aim of this study to investigate streaming phenomena in the core which may originate from such a fluid-structure interaction. This work presents a numerical solver for such a configuration. It was developed in the OpenFOAM software environment and is based on the Arbitrary Lagrangian Eulerian (ALE) approach for moving meshes. The solver features a monolithic integration of the one-dimensional, coupled system between the elastic structure and the outer fluid annulus into a dynamic boundary condition for the moving surface of the fluid core. Results indicate that our configuration may serve as a mechanical model of the Tullio Phenomenon (sound-induced vertigo). (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
The dynamic response of a small, very viscous liquid droplet composed of a core fluid surrounded by a thin fluid shell is examined as additional fluid is deposited into this incompressible shell. At early times, the shell incorporates the extra mass by ruffling its external surface, and a number of crenations form. These protuberances decrease in size and number over a longer time period, and eventually the droplet again becomes spherical, with an increased radius. This sequence of events and its dependence on the rheological properties of the fluids are studied. These effects compare well qualitatively with those obtained using a surface fluid rather than a finite thickness shell of fluid. The possible implications of this fluid model for the surface ruffling effects observed in cell biology are discussed.  相似文献   

17.
The existence of a generalized weak solution is proved for the nonstationary problem of motion of a rigid body in the flow of a viscous incompressible fluid filling a cylindrical pipe of arbitrary cross-section. The fluid flow conforms to the Navier–Stokes equations and tends to the Poiseuille flow at infinity. The body moves in accordance with the laws of classical mechanics under the influence of the surrounding fluid and the gravity force directed along the cylinder. Collisions of the body with the boundary of the flow domain are not admitted and, by this reason, the problem is considered until the body approaches the boundary.  相似文献   

18.
This paper is devoted to the study of peristaltic flow of a fourth grade fluid in a channel under the considerations of long wavelength and low-Reynolds number. The flow is examined in a wave frame of reference moving with velocity of the wave. The analytic solution has been obtained in the form of a stream function from which the axial velocity and axial pressure gradient have been derived. The results for the pressure rise and frictional force per wavelength have also been computed numerically. The computational results indicate that the pressure rise and frictional force per wavelength are increased in case of non-Newtonian fluid when compared with Newtonian fluid. Several graphs of physical interest are displayed and discussed.  相似文献   

19.
The flow of a viscous fluid over a thin, deformable porous layer fixed to the solid wall of a channel is considered. The coupled equations for the fluid velocity and the infinitesimal deformation of the solid matrix within the porous layer are developed using binary mixture theory, Darcy's law and the assumption of linear elasticity. The case of pure shear is solved analytically for the displacement of the solid matrix, the fluid velocity both in the porous medium and the fluid above it. For a thin porous layer the boundary condition for the fluid velocity at the fluid-matrix interface is derived. This condition replaces the usual no slip condition and can be applied without solving for the flow in the porous layer.  相似文献   

20.
Dominik Kern  Georg Jehle 《PAMM》2016,16(1):279-280
A rotor partially filled with a viscous incompressible fluid is modeled as planar system. Its structural part, i. e. the rotor, is assumed to be rigid, circular, elastically supported and running with a prescribed time-dependent angular velocity. Both parts, structure and fluid, interact via the no-slip condition and the pressure. The point of departure for the mathematical formulation of the fluid filling is the Navier-Stokes equation, which is complemented by an additional equation for the evolution of its free inner boundary. Further, rotor and fluid are subjected to volume forces, namely gravitation. Trial functions are chosen for the fluid velocity field, the pressure field and the moving boundary, which fulfill the incompressibility constraint as well as the boundary conditions. Inserting these trial functions into the partial differential equations of the fluid motion, and applying the method of weighted residuals yields equations with time derivatives only. Finally, in combination with the rotor equations, a nonlinear system of 12 differential-algebraic equations results, which sufficiently describes solutions near the circular symmetric state and which may indicate the loss of its stability. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号