首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M Carmeli  S Malin 《Annals of Physics》1977,103(1):208-232
The starting point is a spinor affine space-time. At each point, two-component spinors and a basis in spinor space, called “spin frame,” are introduced. Spinor affine connections are assumed to exist, but their values need not be known. A metric tensor is not introduced. Global and local gauge transformations of spin frames are defined with GL(2) as the gauge group. Gauge potentials Bμ are introduced and corresponding fields Fμν are defined in analogy with the Yang-Mills case. Gravitational field equations are derived from an action principle. Incases of physical interest SL(2, C) is taken as the gauge group, instead of GL(2). In the special case of metric space-times the theory is identical with general relativity in the Newman-Penrose formalism. Linear combinations of Bμ are generalized spin coefficients, and linear combinations of Fμν are generalized Weyl and Ricci tensors and Ricci scalar. The present approach is compared with other formulations of gravitation as a gauge field.  相似文献   

2.
Yue-Liang Wu 《中国物理C(英文版)》2017,41(10):103106-103106
The relativistic Dirac equation in four-dimensional spacetime reveals a coherent relation between the dimensions of spacetime and the degrees of freedom of fermionic spinors. A massless Dirac fermion generates new symmetries corresponding to chirality spin and charge spin as well as conformal scaling transformations. With the introduction of intrinsic W-parity, a massless Dirac fermion can be treated as a Majorana-type or Weyl-type spinor in a six-dimensional spacetime that reflects the intrinsic quantum numbers of chirality spin. A generalized Dirac equation is obtained in the six-dimensional spacetime with a maximal symmetry. Based on the framework of gravitational quantum field theory proposed in Ref. [1] with the postulate of gauge invariance and coordinate independence, we arrive at a maximally symmetric gravitational gauge field theory for the massless Dirac fermion in six-dimensional spacetime. Such a theory is governed by the local spin gauge symmetry SP(1,5) and the global Poincar′e symmetry P(1,5)= SO(1,5) P~(1,5) as well as the charge spin gauge symmetry SU(2). The theory leads to the prediction of doubly electrically charged bosons. A scalar field and conformal scaling gauge field are introduced to maintain both global and local conformal scaling symmetries. A generalized gravitational Dirac equation for the massless Dirac fermion is derived in the six-dimensional spacetime. The equations of motion for gauge fields are obtained with conserved currents in the presence of gravitational effects. The dynamics of the gauge-type gravifield as a Goldstone-like boson is shown to be governed by a conserved energy-momentum tensor, and its symmetric part provides a generalized Einstein equation of gravity. An alternative geometrical symmetry breaking mechanism for the mass generation of Dirac fermions is demonstrated.  相似文献   

3.
In article [1] a quantum field theory for electroweak interaction and gravitational interaction has been proposed. By introducing the conformal (Weyl) symmetry, this theory has local scale invariance and SU(2)⊗U(l) gauge invariance and leads to the existence of Weyl's vector meson, which absorbs the Higgs particle remaining in the W-S model, and other interesting results. However, it is remarked in the above paper that the theory, even if it ignores the gravitational interaction, is not renormalisable. So its application is limited.  相似文献   

4.
《Physics letters. [Part B]》2004,578(3-4):402-408
Dirac–Born–Infeld theory is shown to possess a hidden invariance associated with its maximal electric field strength. The local Lorentz symmetry O(1,n) on a Dirichlet-n-brane is thereby enhanced to an O(1,nO(1,n) gauge group, encoding both an invariant velocity and acceleration (or length) scale. The presence of this enlarged gauge group predicts consequences for the kinematics of observers on Dirichlet branes, with admissible accelerations being bounded from above. An important lesson is that the introduction of a fundamental length scale into relativistic kinematics does not enforce a deformation of Lorentz boosts, as one might assume naively. The exhibited structures further show that Moffat's non-symmetric gravitational theory qualifies as a candidate for a consistent Born–Infeld type gravity with regulated solutions.  相似文献   

5.
A single chiral structure is shown to underly several three-dimensional field equations of physics, e.g., the ferromagnet, the stationary axi-symmetric gravitational problem, and the vacuum SU(2) gauge field in the Coulomb gauge. This connection invites cross-fertilization of exact solutions. As illustrations, exact finite energy solutions are obtained for the ferromagnet via the corresponding Weyl, Kerr, and Tominatsu-Sato solutions of Einstein's gravitational equations. Comments are made on the “local gauge invariance” of the ferromagnet and the gravitational field.  相似文献   

6.
A massive Yang-Mills field theory with the conformal (Weyl) invariance[1] and gauge invariance is proposed. It involves the gravitational and various gauge interactions, in which all the mass terms appear as the uniform interactional form m(x) = KΦ(x). When the conformal and gauge symmetries are broken spontaneously, the Einstein gravitation emerges and all the fields obtain masses, this theory is renormalizable and unitary with the gravitation ignored. Finally we give a relation between the theory and the Higgs mechanism.  相似文献   

7.
M Carmeli  M Kaye 《Annals of Physics》1978,113(1):177-183
An explicitly SL(2, C) gauge-invariant Lagrangian density, equivalent to Hilbert's Lagrangian density, is written, and a Palatini-type variational principle is applied to it. The resulting field equations are Einstein's equations written in dyad notation and a set of equations defining the spin coefficients in terms of the components of the null tetrad vectors and their directional derivatives. The techniques employed throughout this article are those which were developed in the SL(2, C) gauge theory of gravitation.  相似文献   

8.
Although the question of the unification of the gravitational and electromagnetic interactions has been obscured by the unification of the electromagnetic and nuclear interactions, SU(2) gravitational gauge degrees have been recently unified to the U(1) electromagnetic degrees. If the resulting tracks of charges which mediate the unifying Yang-Mills field are assumed to induce a (dilation) scale invariance on the space-time geometry, the decoupling of these long range interactions, which takes place via a U(1) symmetry (periodic time) break, could be related to the onset of an initial singularity and origin of (linear) time.  相似文献   

9.
A spinor Lagrangian invariant under global coordinate, local Lorentz and local chiral SU(n) × SU(n) gauge transformations is presented. The invariance requirement necessitates the introduction of boson fields, and a theory for these fields is then developed by relating them to generalizations of the vector connections in general relativity and utilizing an expanded scalar curvature as a boson Lagrangian. In implementing this plan, the local Lorentz group is found to greatly facilitate the correlation of the boson fields occurring in the spinor Lagrangian with the generalized vector connections.The independent boson fields of the theory are assumed to be the inhomogeneously transforming irreducible parts of the connections. It turns out that no homogeneously transforming parts are necessary to reproduce the chiral Lagrangian usually used as a basis for phenomenological field theories. The Lagrangian in question appears when the gravitational interaction is turned off. It includes pseudoscalar, spinor, vector, and axial vector fields, and the vector fields carry mass in spite of the fact that the theory is locally gauge invariant.  相似文献   

10.
A lagrangian euclidean model of Drinfeld-Sokolov (DS) reduction leading to generalW-algebras on a Riemann surface of any genus is presented. The background geometry is given by the DS principal bundleK associated to a complex Lie groupG and anSL(2,) subgroupS. The basic fields are a hermitian fiber metricH ofK and a (0, 1) Koszul gauge fieldA * ofK valued in a certain negative graded subalgebrar ofg related tos. The action governing theH andA * dynamics is the effective action of a DS field theory in the geometric background specified byH andA *. Quantization ofH andA * implements on one hand the DS reduction and on the other defines a novel model of 2d gravity, DS gravity. The gauge fixing of the DS gauge symmetry yields an integration on a moduli space of DS gauge equivalence classes ofA * configurations, the DS moduli space. The model has a residual gauge symmetry associated to the DS gauge transformations leaving a given fieldA * invariant. This is the DS counterpart of conformal symmetry. Conformal invariance and certain non-perturbative features of the model are discussed in detail.  相似文献   

11.
《Physics letters. [Part B]》1987,195(2):209-212
A two-dimensional SU(N) gauge model coupled to Weyl fermions is studied following recent suggestions for the quantization of potentially anomalous chiral theories. The Weyl fermion determinant is evaluated and the fermionic current is shown to be conserved due to the gauge invariance of the resulting quantum theory. As in the abelian case, the vector meson acquires a mass and the model is consistent provided a regularization parameter is conveniently chosen.  相似文献   

12.
In this work, we focus on the theory of gravito-electromagnetism (GEM)—the theory that describes the dynamics of the gravitational field in terms of quantities met in electromagnetism—and we propose two novel forms of metric perturbations. The first one is a generalisation of the traditional GEM ansatz, and succeeds in reproducing the whole set of Maxwell’s equations even for a dynamical vector potential \(\mathbf {A}\). The second form, the so-called alternative ansatz, goes beyond that leading to an expression for the Lorentz force that matches the one of electromagnetism and is free of additional terms even for a dynamical scalar potential \(\varPhi \). In the context of the linearised theory, we then search for scalar invariant quantities in analogy to electromagnetism. We define three novel, 3rd-rank gravitational tensors, and demonstrate that the last two can be employed to construct scalar quantities that succeed in giving results very similar to those found in electromagnetism. Finally, the gauge invariance of the linearised gravitational theory is studied, and shown to lead to the gauge invariance of the GEM fields \(\mathbf {E}\) and \(\mathbf {B}\) for a general configuration of the arbitrary vector involved in the coordinate transformations.  相似文献   

13.
WU Ning 《理论物理通讯》2003,39(5):561-568
Based on local gauge invariance, four different kinds of fundamental interactions in nature are unified in a theory which has SU(3)C( )SU SU(2)L( )U(1)( )s Gravitational Gauge Group gauge symmetry. In this approach,gravitational field, like electromagnetic field, intermediate gauge field, and gluon field, is represented by gauge potential.Four kinds of fundamental interactions are formulated in the similar manner, and therefore can be unified in a direct or semi-direct product group. The model discussed in this paper is a renormalizable quantum model and can be regarded as an extension of the standard model to gravitational interactions, so it can be used to study quantum effects of gravitational interactions.  相似文献   

14.
Some aspects of supersymmetric gauge theories and discussed. It is shown that dynamical supersymmetry breaking does not occur in supersymmetric QED in higher dimensions. The cancellation of both local (perturbative) and global (non-perturbative) gauge anomalies are also discussed in supersymmetric gauge theories. We argue that there is no dynamical supersymmetry breaking in higher dimensions in any supersymmetric gauge theories free of gauge anomalies. It is also shown that for supersymmetric gauge theories in higher dimensions with a compact connected simple gauge group, when the local anomaly-free condition is satisfied, there can be at most a possibleZ 2 global gauge anomaly in extended supersymmetricSO(10) (or spin (10)) gauge theories inD=10 dimensions containing additional Weyl fermions in a spinor representation ofSO(10) (or spin (10)). In four dimensions with local anomaly-free condition satisfied, the only possible global gauge anomalies in supersymmetric gauge theories areZ 2 global gauge anomalies for extended supersymmetricSP(2N) (N=rank) gauge theories containing additional Weyl fermions in a representation ofSP(2N) with an odd 2nd-order Dynkin index.  相似文献   

15.
Spinor relativity is a unified field theory, which derives gravitational and electromagnetic fields as well as a spinor field from the geometry of an eight-dimensional complex and ‘chiral’ manifold. The structure of the theory is analogous to that of general relativity: it is based on a metric with invariance group GL(ℂ2), which combines the Lorentz group with electromagnetic U(1), and the dynamics is determined by an action, which is an integral of a curvature scalar and does not contain coupling constants. The theory is related to physics on spacetime by the assumption of a symmetry-breaking ground state such that a four-dimensional submanifold with classical properties arises. In the vicinity of the ground state, the scale of which is of Planck order, the equation system of spinor relativity reduces to the usual Einstein and Maxwell equations describing gravitational and electromagnetic fields coupled to a Dirac spinor field, which satisfies a non-linear equation; an additional equation relates the electromagnetic field to the polarization of the ground state condensate.  相似文献   

16.
17.
We reformulate the general theory of relativity in the language of Riemann–Cartan geometry. We start from the assumption that the space-time can be described as a non-Riemannian manifold, which, in addition to the metric field, is endowed with torsion. In this new framework, the gravitational field is represented not only by the metric, but also by the torsion, which is completely determined by a geometric scalar field. We show that in this formulation general relativity has a new kind of invariance, whose invariance group consists of a set of conformal and gauge transformations, called Cartan transformations. These involve both the metric tensor and the torsion vector field, and are similar to the well known Weyl gauge transformations. By making use of the concept of Cartan gauges, we show that, under Cartan transformations, the new formalism leads to different pictures of the same gravitational phenomena. We illustrate this fact by looking at the one of the classical tests of general relativity theory, namely the gravitational spectral shift. Finally, we extend the concept of space-time symmetry to Riemann–Cartan space-times with scalar torsion and obtain the conservation laws for auto-parallel motions in a static spherically symmetric vacuum space-time in a Cartan gauge, whose orbits are identical to Schwarzschild orbits in general relativity.  相似文献   

18.
The energy-momentum tensor in spontaneously broken non-Abelian gauge field theories is studied. The motivation is to show that recent results on the finiteness and gauge independence of S-matrix elements in gauge theories extends to observable amplitudes for transitions in a gravitational field. Path integral methods and dimensional regularization are used throughout. Green's functions Γμν(j)(q; p1,…,pj) involving the energy-momentum tensor and j particle fields are proved finite to all orders in perturbation theory to zero and first order in q, and finite to one loop order for general q. Amputated Green's functions of the energy momentum tensor are proved to be gauge independent on mass shell.  相似文献   

19.
A canonical formalism of the dynamics of interacting spherically symmetric Yang-Mills and gravitational fields is presented. The work is based on Dirac's technique for constrained hamiltonian systems. The gauge freedom of the Yang-Mills field is treated in the same footing with the coordinate transformation freedom of the gravitational field. In particular, the fixation of coordinates and the fixation of the internal gauge are achieved by totally similar techniques. Two classes of spherically symmetric motions are considered: (i) the class for which the Yang-Mills potentials themselves are spherically symmetric (“manifest spherical symmetry”). In this case the results are valid for an arbitrary gauge group; and (ii) the class for which, in the SO(3) gauge group, a rotation in physical space is compensated by a rotation of equal magnitude but opposite direction in isospin space (“spherical symmetry up to a gauge transformation”). For manifest spherical symmetry the problem amounts to effectively dealing with an abelian gauge group and the most general solution of the field equations turns out to be the Reissner-Nordström metric with a Coulomb field. For spherical symmetry up to a gauge transformation the problem is more interesting. the formalism contains then, besides the gravitational variables, three pairs of functions of the radial coordinate that describe the degrees of freedom of the Yang-Mills field. Two pairs of these functions can be combined into a complex field ψ and its conjugate. The hamiltonian is then invariant under r-dependent rotations in the complex ψ-plane. The third degree of freedom plays the role of a compensating field associated with this invariance under localized U(l) rotations. The compensating field can always be brought to zero by a gauge transformation. After this is done the gauge is completely fixed but the problem remains invariant under position independent rotations in the ψ plane. Static solutions of the field equations in this gauge are of the form ψ(r) = (r) exp (iΘ) with Θ independent of position. The particular case Θ = 0 corresponds to the Wu-Yang ansatz. A nontrivial static solution can be found in closed form. The Yang-Mills field is of the generalized Wu-Yang type with an extra electric term, and the metric is the Reissner-Nordström one. It is pointed out that a Higgs field can be easily introduced in the formalism. The addition of the Higgs field does not destroy the invariance of the Hamiltonian under r-dependent rotations in the ψ-plane. The conserved quantity associated with the invariance under ψ → exp (i(const))ψ coincides with the electric charge as defined by 't Hooft in a more general context.  相似文献   

20.
U. Bleyer 《Annalen der Physik》1982,494(6):397-407
Theories of gravitation are called gauge invariant if the invariance of the gravitational field lagrangian with respect to gauge transformations of the gravitational field variables is independend of the invariance of this lagrangian with respect to the Einstein group of general coordinate transformations. They are bimetric theories because the coordinate covariance is ensured by constructing scalar densities relative to a globally flat background metric. Such a theory is represented by the PAUL-FIERZ equations for massless spin 2 particles. But this theory is inconsistent if nongravitational matter is enclosed as a source. All attempts to overcome this inconsistancy preserving gauge invariance lead to Einstein's GRT. We review this problem and compare the situation with a theory proposed by LOGUNOV showing that he overcomes the inconsistency of linear Einstein's equations by replacing the field variables by a gauge invariant combination of new ones, which turns out to be the first order form of v. FREUD'S superpotential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号