首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
In order to prepare intumescent flame retardant acrylonitrile-butadiene-styrene (ABS) composites with only a small decrease in their mechanical properties, we investigated the effect of adding an elastomeric polyacrylate latex and the surfactant TX-10 phosphate to modify the ammonium polyphosphate, melamine, and calcium 3-hydroxy-2, 2-bis(hydroxymethyl) propyl phosphate normally used, which resulted in an intumescent flame retardant composite (IFRC) powder with the aim of improving compatibility. These ABS/IFRC composites were compared with standard material containing unmodified intumescent flame retardant (NIFR) by investigating their thermal properties, melt characteristics, mechanical properties, and microstructure. The data showed that the glass transition temperature of the ABS/IFRC composites decreased slightly in all cases, the complex viscosity of the ABS/IFRC composites was remarkably reduced, and the mechanical properties improved in comparison with the material containing NIFR. A slight increase in impact strength retention, as well as a remarkable increase in tensile and flexural strength retention of ABS/IFRC, was achieved due to superior compatibility between ABS and IFRC in comparison with ABS/NIFR.  相似文献   

2.
ABS/PMMA/PC (acrylonitrile-butadiene-styrene)/poly(methyl methacrylate)/bisphenol A polycarbonate) and ABS/PMMA/phenoxy ternary blends were prepared using a corotating twin-screw extruder, where the ABS content was fixed at 60% by weight, and the other ingredients varied 0 ~ 40%. Tensile modulus, yield strength, elongation at break, and notched impact strength varied linearly with compositions in ABS/PMMA/phenoxy blends, whereas positive synergisms of these properties were generally obtained with ABS/PMMA/PC blends. The results were interpreted in terms of interpositions of PMMA between ABS and PC, which were seen from the TEM micrographs and predicted from the spreading coefficient. Surface gloss of ABS increased in ABS/ PMMA(60/40) blend but decreased in ternary blends, and this phenomenon was possibly explained by the pearl gloss mechanism.  相似文献   

3.
《Composite Interfaces》2013,20(4-6):337-346
One approach to improve the impact strength of acrylonitrile–butadiene–styrene (ABS)/clay nanocomposites is to increase rubber content. To investigate the effect of the rubber content of ABS on the mechanical properties of the ABS/clay nanocomposites, other parameters were fixed and ABS/clay nanocomposites containing various rubber contents were prepared in this study. Also the effect of the UV stabilizer on the mechanical properties of ABS/clay nanocomposite was studied. For addition of 3 wt% clay, ABS nanocomposite with 35 wt% content of rubber displayed the highest reinforcement ratio for tensile properties and impact strength.  相似文献   

4.
Poly(vinyl chloride) (PVC)/acrylonitrile-butadiene-styrene (ABS) blends containing organically modified montmorillonite (OMMT) were prepared using a twin-screw extruder followed by injection molding. The OMMT dispersion was evaluated by X-ray diffraction and transmission electron microscopy. The clay was preferentially situated in the PVC phase and across the interfaces of PVC/ABS. The effect of the addition of OMMT on the morphology and mechanical properties was also evaluated. Scanning electron microscopy revealed a large reduction in domain size when OMMT was used. The mechanical properties were studied through tensile and impact tests. The yield stress increased when an appropriate amount of OMMT was used without impairing the impact strength.  相似文献   

5.
Acrylonitrile-butadiene-styrene (ABS)/polyamide 6 (PA6) blends containing various amounts of organomontmorillonite (OMMT) were prepared using a twin-screw extruder followed by injection molding. The effect of OMMT on the microstructure and properties of the ternary nanocomposites is investigated by wide-angle X-ray diffraction (WAXD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and mechanical properties testing. The results showed the OMMT platelets were preferentially located and exfoliated in the PA6 phase, but some were located at the interface of the ABS and PA6 phase. The effect of the addition of the OMMT on the morphology and mechanical properties was also evaluated. SEM revealed that the dimensions of the dispersed PA6 droplets were greatly reduced when the concentration of the OMMT was less than 4 phr. The domain size was less than the neat ABS/PA6 blends with the increasing of the OMMT content. It was suggested that the OMMT can compatibilize the ABS/PA6 blend. In addition, the flexural strength and modulus increased with increasing OMMT content, but the tensile strength became maximal at 3 phr OMMT. The OMMT had a negligible effect on the impact strength of the ABS/PA6 blend nanocomposite.  相似文献   

6.
The flammability of room temperature vulcanized silicone rubber (RTVSR) composites filled with melamine phosphate (MP) as intumescent flame-retardant additives was characterized by limiting oxygen index (LOI), UL-94 test, and cone calorimeter. In addition, the thermal degradation of the composites was studied using thermogravimetric analysis (TGA). Furthermore, in order to relate to actual application requirements, the comprehensive performance of the RTVSR/MP composites was optimized by adding organic nano-montmorillonite (OMMT) as a partial substitute for the MP. The as-prepared intumescent flame-retardant RTVSR/MP/OMMT nanocomposites were characterized by LOI, UL-94 test, TGA, cone calorimetry, scanning electron microscopy (SEM), and mechanical tests. The residue morphology formed after the burning of the nanocomposites was analyzed by its SEM and digital photographs. The results showed that the flame-retardant nanocomposites filled with 10 phr OMMT and 35 phr MP displayed the best comprehensive performance in terms of the flame retardancy, mechanical properties, and heat stability at low cost. It is expected that the intumescent flame-retardant silicone rubber composites with simultaneously improved flame retardancy, thermal stability, and mechanical properties will meet more requirements of the increasingly complex applications.  相似文献   

7.
In several acrylonitrile-butadiene-styrene (ABS) copolymers, some amounts of polybutadiene (PB) laTeX grafted with styrene-acrylonitrile (SAN) copolymer were replaced by acrylonitrile-butadiene rubber (NBR) copolymer, and the variations of morphology, mechanical properties, and rheological properties were examined. The impact strength of ABS, with a bimodal distribution of rubber size, was improved by the presence of the NBR, which distributes coarsely in the SAN matrix. Yield behavior in the rheological response due to the presence of rubber particles in the SAN matrix was enhanced by the coarser NBR particles, especially at high temperature.  相似文献   

8.
The effect of compatibilizer types and concentrations on the mechanical properties and morphology of Pithecellobium Clypearia Benth Fiber (PCBF)/recycled ABS composites prepared by a vane extruder were characterized. In addition, the percentage of compatibilizer was fixed at 8%, and the effect of lubricant concentrations on the mechanical properties and torque behaviors of the composites was also studied. Maleic anhydride grafted ABS (ABS-g-MAH) and maleic anhydride grafted PS (PS-g-MAH) were used as compatibilizers; the lubricant used was Struktol TPW 604 (blend of aliphatic carboxylic acid salts and mono diamides). The composite with 8% ABS-g-MAH showed superior mechanical properties compared to the composite without compatibilizer and the 8% PS-g-MAH compatibilized composites. Compared with PS-g-MAH, ABS-g-MAH was more effective for the composites to improve the interfacial interaction and mechanical properties. The comprehensive mechanical properties of PCBF/recycled ABS composite filled with 4% lubricant were better than the composites without lubricant and the composites with any other content of TPW 604. Moreover, the torque of the composites in an internal mixer decreased with an increasing lubricant content.  相似文献   

9.
《Composite Interfaces》2013,20(2-3):175-196
The morphology of blends of poly(acrylonitrile-co-butadiene-co-styrene) (ABS) and poly(ethylene terephthalate glycol) (PET-G) has been investigated with special reference to the effect of blend ratio and compatibilization. Scanning electron microscopy (SEM) examination revealed different morphologies such as dispersed, cocontinuous and phase inverted depending on the composition, which indicates that the binary blends are immiscible and form a two-phase structure. Tensile properties decreased with increase in the ABS content while the impact strength reached an optimum at ca. 70% ABS. Influence of a triblock co-polymer based on styrene and butadiene (SBS) on morphology, mechanical measurements and failure topography was used as criterion of the compatibilization effect. The compatiblizing action of SBS was evidenced by the sharp decrease in domain size of the dispersed phase followed by an increase at higher concentrations. The conformation of the compatibilizer at the interface was further analyzed based on the area occupied by the compatibilizer at the blend interface. The results were in agreement with the theoretical predictions of Noolandi and Hong. The extent of interface adhesion in these blends was analyzed by examination of the fracture-surface morphology. Addition of SBS also improved notched impact, elongation-at-break, tensile strength and modulus of elasticity. These results confirm that SBS is an effective compatibilizer for ABS/PET-G blends.  相似文献   

10.
Polyamide (PA) 66/PP-g-MA/Organic-modified MMT (OMMT) ternary composites were prepared by direct melt compounding. The FESEM results showed that the PP-g-MA phase dispersed homogeneously in the PA matrix due to the interfacial chemical reactions between the two phases. The mechanical properties of the composites were evaluated. The tensile and bending properties decreased and the notched impact strength increased with the increase of PP-g-MA. The tribological behaviors of the ternary composites were studied by means of a ball-on-disk apparatus. The ternary composites exhibited better tribological properties compared with the PA/OMMT system. This was probably due to the fact that the PP has good flexibility and a transferring film could be formed easily on the counterpart. Combining the results of the mechanical and tribological properties, the optimal mass fraction of PP-g-MA was 10 wt. %.  相似文献   

11.
Blends of polyamide 6 (PA6)/polycarbonate (PC)/epoxy resin (EP) were melt blended with three different mixing sequences. Their mechanical properties, crystallization, and rheological behaviors, as well as the morphology, were investigated via mechanical testing, differential scanning calorimetry (DSC), dynamic rheometry, and scanning electron microscopy (SEM). It was noted that the mixing sequences affected the distribution of EP in the PA6 matrix, as well as the reactivity of EP with PA6 and PC. Mechanical testing showed that the blends prepared by the first (S1, blending PA6, PC, and EP simultaneously) and second mixing sequences (S2, blending PC with a premixture of PA6/EP) had higher notched Izod impact strengths due to the formation of PA6-EP-PC block copolymer (named as the AEC structure) during compounding, as evidenced by the results of dynamic rheology and SEM. Whereas for the third sequence (S3, blending PA6 with a premixture of PC/EP), EP could barely react with PA6 and PC, leading to little formation of AEC structure, which resulted in a poor notched Izod impact strength of the blends. The incorporation of EP actually acted as a plasticizer to improve the elongation at break of the S3 blends. In addition, the DSC results and SEM observations showed that there were distinct differences in the crystallization and morphology of the samples prepared by the different mixing sequences.  相似文献   

12.
《Composite Interfaces》2013,20(7):623-632
The rheological behaviour, dispersion, crystallization behavior, mechanical properties, fracture surface morphology of polyethylene (PE)/TiO2 nanocomposites prepared by melt compounding were investigated using rheometer, energy dispersive X-ray spectrometer (EDX), polarized microscopy, impact tester, universal testing machine and field-emission scanning electron microscopy (FE-SEM). The rheological analysis indicated a fine dispersion of TiO2 during the melt compounding. The large scaled surface dispersion of TiO2 nanoparticles was revealed by the EDX composition distribution maps. The introduction of 2.0 wt% TiO2 in composites improved the mechanical properties significantly compared to neat PE, and resulted in 45% increase in notched impact strength. Moreover, the further analysis and discussion showed the mechanical properties of the composites were controlled by the dispersion conditions of TiO2 and its nucleating effect on PE crystallization.  相似文献   

13.
Nylon 6/poly(acrylonitrile‐butadiene‐styrene)(ABS) blends were prepared in the molten state by a twin‐screw extruder. Maleic anhydride‐grafted polypropylene (MAP) and solid epoxy resin (bisphenol type‐A) were used as compatibilizers for these blends. The effects of compatibilizer addition to the blends were studied via tensile, torque, impact properties and morphology tests. The results showed that the additions of epoxy and MA copolymer to nylon 6/ABS blends enhanced the compatibility between nylon 6 and ABS, and this lead to improvement of mechanical properties of their blends and in a size decrease of the ABS domains.  相似文献   

14.
Illite powder, modified by an aluminate coupling agent, was used as a filler to strengthen polyvinyl chloride (PVC) resin with mechanical properties of rigid PVC/modified illite composite being tested. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were applied for the structural characterization of the raw materials. SEM and Fourier transform infrared spectroscopy (FTIR) measurements were used for demonstrating the effect of modification of the illite powder. Results from tests of mechanical properties showed that, when the dosage of modified illite powder was 2 parts per hundred parts by weight, there was an obvious toughening effect on rigid PVC material; the notched impact strength was increased by 59% in comparison to neat rigid PVC, but the elongation of the composites decreased slightly.  相似文献   

15.
Blends of two grades of acrylonitrile‐butadiene‐styrene (ABS) with three different compounds of poly (vinyl chloride) (PVC) were prepared via melt processing and their morphology, flammability, and physical and mechanical properties were investigated. SEM results showed that the ABS/PVC blend is a compatible system. Also, it can be inferred from fracture surface images that ABS/PVC blends are tough, even at low temperatures. It was found that properties of these blends significantly depend on blend composition and PVC compound type; however, the ABS types have only a small effect on blend properties. On blending of ABS with a soft PVC compound, impact strength, and melt flow index (MFI) increased, but tensile and flexural strength decreased. In contrast, blending of ABS with a rigid PVC compound improved fire retardancy and some mechanical properties and decreased MFI and impact strength.  相似文献   

16.
Thermoplastic vulcanizates (TPVs) based on nitrile butadiene rubber (NBR)/ acrylonitrile-butadiene-styrene (ABS) blends were prepared by dynamic vulcanization, and then compatibilized by styrene-butadiene-styrene block copolymer (SBS). The effects of SBS compatibilizer on mechanical properties, Mullins effect, and morphological properties of the TPVs were investigated systematically. Experimental results indicated that SBS had an excellent compatibilization effect on the dynamically vulcanized NBR/ABS TPVs. The tensile strength increased from 9.4 to 15.8 MPa and the elongation at break went through a maximum value when the dosage of SBS was only 1 phr. Mullins effect results showed that the compatibilized NBR/ABS TPV had relatively lower residual deformation and internal friction loss than the NBR/ABS TPV, indicating the improvement of elasticity. Morphology studies showed that the vulcanized NBR particles were dispersed evenly in the TPVs and the dimensions of NBR particles were decreased remarkably with the incorporation of SBS compatibilizer.  相似文献   

17.
《Composite Interfaces》2013,20(5):333-351
In order to improve the mechanical properties of the poly(trimethylene terephthalate) (PTT), both maleinized acrylonitrile–butadiene–styrene (ABS) and short carbon fiber (SCF) were melt-blended with PTT to prepare the composites and their morphology and properties were investigated in detail. When ABS content is fixed at 5?wt.% in composites, SCF can significantly improve the tensile and flexural strength as well as the impact strength of the matrix. The SCF has good interface adherence with the matrix. At glassy state, the storage modulus increases much with increasing SCF content. At rubbery state, the composites have larger cold-crystallization rate. At molten state, SCF first serves as lubricants and then as viscosity reinforcing agent for the matrix with increasing SCF. The composites melt exhibits increasing elastic behaviors with SCF. The composites have larger crystallization rate, but this accelerating effect decreases with excessive SCF content. The crystals formed in different composites are quite different in size or perfection.  相似文献   

18.
Aliphatic chains were introduced into the macromolecule of kraft lignin using aliphatic chlorides as esterification reagents. The hydrophobicity of esterified lignin (EL) was enhanced as compared to the original lignin. EL was further used as a macromolecular coupling agent in poly(butylene succinate)/chemi-thermomechanical pulp fiber composites. As a result, the composites with enhanced mechanical performance were obtained, and the tensile strength, impact strength, and bending strength were increased by 25.1, 22.4, and 19.3%, respectively, under 2 wt% EL-treatment (synthesized by palmitoyl chloride, –COCl/–OH = 1.5:1) in comparison with those of the specimen without any coupling agent treatment. Furthermore, the composite prepared with EL-treated fibers shows significant lower water absorption ratio than that of untreated one. A significant increase in storage modulus (E′) was observed upon the incorporation of treated fibers. Furthermore, the improved interfacial bonding between treated fibers and matrix was verified by SEM images. The shear viscosity of composite was increased by the incorporation of EL, but in general, the rheological behaviors of composites are not significantly changed.  相似文献   

19.
In this study the blends of polyethylene terephthalate (PET)/ethylene propylene diene rubber (EPDM) in the presence of multi-walled carbon nanotubes (MWCNT) (1 and 3?wt %) were prepared by melt compounding in an internal mixer. Mechanical and morphological properties of the nanocomposites were investigated. The thermal behaviors of the PET/EPDM nanocomposites were also investigated, by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The results of the mechanical tests showed that the tensile strength, elastic modulus and the hardness of the blends were increased with increasing CNT, while the impact strength and elongation at break decreased. The DSC and TGA results showed an increase of melting temperature (Tm) and degradation temperature of the nanocomposites with the addition of the carbon nanotubes, because the carbon nanotubes serve both as nucleating agents to increase Tm and prevent the composite from degradation to increase the thermal stability. The microstructure of the composites was evaluated through field emission scanning electron microscopy (FESEM) and the results showed a good distribution of the MWCNT within the polymer blend.  相似文献   

20.
Ultrafine full-vulcanized powdered rubber (UFPR) was added into intumescent fire retardant polypropylene (IFR-PP) composites, and fire retardance, morphology, and properties of the composite were analyzed. Ammonium polyphosphate and pentaerythritol were used as the intumescent fire retardants (IFR). The mechanical properties (elongation at break increased from 70% to 110%) and the melt flowability of IFR-PP improved by adding a small quantity of UFPR (less than 0.5 phr) but decreased when the UFPR was more than 0.5 phr. At the same time, the fire retardance, as measured by the limiting oxygen index and the UL94 vertical test rating, and other mechanical properties decreased appreciably with adding UFPR. The reasons were analyzed by using SEM micrographs, and a model was proposed to explain the reasons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号