首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The proposition that BCl3-coinitiated olefin (isobutylene, styrene) polymerizations terminate by chlorination has been corroborated by model experiments. Key experiments showed that under simulated polymerization conditions neither tert-butyl chloride nor 2-chloro-2,4,4-trimethylpentane reacts with BCl3; that H2O/BCl3 + 2,4,4-trimethyl-1-pentene (TMP) produce 2-chloro-2,4,4-trimethylpentane; and that H2O/BCl3 + isobutylene gives rise to tert-butyl chloride. Extended model studies demonstrated that certain alkyl and benzyl chlorides produce carbenium ions in the presence of BCl3 and that TMP can readily be alkenylated by using 1-substituted allyl chlorides in conjunction with BCl3. These experiments led to the discovery that olefin polymerizations may be initiated by suitable allyl or benzyl chlorides and BCl3. Accordingly, polymerizations of isobutylene have been carried out with RCl/BCl3, where R is allyl or benzyl. These experiments suggest that both controlled initiation and termination, i.e., initiation by alkenylation and termination by chlorination, can be achieved with the allyl chloride/BCl3 initiator system opening new avenues toward the synthesis of asymmetric telechelic polymers.  相似文献   

2.
The reaction between tert-butylchloride (t-BuCl) and dimethylcyclopentadienylaluminum (Me2AlCPD) was studied as a model for initiation by the tert-butyl cation (t-Bu) and termination by cyclopentadienylation by the Me2Al(CPD)Cl? counteranion of isobutylene polymerization. All reaction products formed in this model system have been identified and quantitatively determined. A comprehensive scheme that indicates pathways to these products was developed (scheme III). It is proposed that the predominant product, tert-butylcyclopentadiene (t-BuCPD), arises in the collapse of the t-Bu-Me2Al(CPD)Cl? ion pair, mainly by CPD? transfer to the tert-butyl cation. The minor products are neopentane (t-BuMe) and isobutylene (i-C4H8), which are probably formed, respectively, by Me? transfer to and proton loss from the t-butyl cation. Cyclopentadienylation selectivity increases by lowering the temperature and extrapolation of results suggests 100% cyclopentadienylation at ?55°C. The t-BuCl/Me2AlCPD ratio strongly influences the overall reaction pathway. The reaction is first order in t-BuCl with ΔEa of ca. 7 kcal/mole (1,2-dichloroethane or chlorobenzene solvents, +24 to ?29°C). Indirect evidence indicates that the kinetic product of cyclopentadienylation is 5-t-BuCPD and that this isomer cannot be tert-butylated; that is, the initiation of 5-t-BuCPD polymerization by t-Bu is sterically unfavorable. Detailed analysis of the chemistry and kinetics of the t-BuCl/Me2AlCPD model system holds important clues to the controlled polymerization of olefins leading to macromolecules with cyclopentadiene (CPD) termini.  相似文献   

3.
Model experiments and subsequent polymerization runs have been carried out to elucidate the mechanism of cationic olefin polymerizations initiated by aromatic carbenium ions. Thus, the p-methylbenzylation of 2,4,4-trimethyl-1-pentene, a nonpolymerizable model olefin for isobutylene, was investigated by using the p-CH3C6H4CH2Cl/Et3Al initiating system and CH2Cl2 solvent under various conditions. All the important organic reaction products were identified and most of them, quantitatively determined. Analysis of the nature of the products and their distributions gave important mechanistic information about the chemistry of elementary events and their relative rates; for example, hydridation and ethylation by the Et3AlCl? counteranion of various cations occurs and these processes mimic termination in carbocationic polymerizations. Hydridation and ethylation are much faster than proton elimination (chain transfer in polymerization) and experimental conditions (e.g., Al/Cl ratio and temperature) influence the relative rates of these processes. According to model experiments, the p-CH3C6H4CH2Cl/Et3Al system may initiate olefin (isobutylene) polymerization; chain transfer to monomer should be relatively unimportant, but rapid hydridation or ethylation should reduce the kinetic chain and give low conversions. Predictions derived from model experiments were substantiated by polymerizations with isobutylene and the aromatic initiating system.  相似文献   

4.
The synthesis and characterization of a new block copolymer, poly(styrene-b-isobutylene) (PSt-b-PIB), is described. The synthesis involves the initiation of an isobutylene polymerization by a polystyrene molecule containing a terminal tertiary bromine (PSt-Br), in conjunction with diethylaluminum chloride coinitiator. The species PSt-Br is in turn synthesized by initiating the polymerization of styrene selectively by the tertiary chlorine of the 2-bromo-6-chloro-2,6-dimethylheptane/Et3Al initiator system in the absence of chain transfer. The conditions conducive for selective initiation by tertiary chlorine have been worked out. The pure block copolymer, PSt-b-PIB, is obtained by selective extraction and some of its properties were determined, e.g., solubility and film behavior, Tg, and intrinsic viscosity versus temperature. The intrinsic viscosity (in toluene) exhibits a maximum and a minimum in the temperature range from 15 to 55°C.  相似文献   

5.
On exposure to UV or visible light, TiCl4 readily decomposes homolytically and yields TiCl3 plus chlorine. Similarly, irradiation of TiCl4,-hydrocarbon systems produce chlorinated hydrocarbon and HC1. 2,4,4- Trimethyl- 1-pentene, a nonpolymerizable model for isobutylene, rapidly dimerizes in the presence of TiCl4 during irradiation with UV and visible light and yields a mixture of conventional head-to-tail C16 -olefins. While conversions are higher in the presence of light than in darkness, the structures of the dimers formed under these conditions are indistinguishable. The structures of these dimers of 2,4,4-trimethyl-1-pentene are incompatible with the cation-radical initiation mechanism of isobutylene polymerization effected by TiCl4 under irradiation proposed by Czechoslovak investigators. Polymerization by condensation experiments have been carried out in the dark and in visible light, and an interpretation of this phenomenon that complements the one proposed by French authors has been developed.  相似文献   

6.
A simple but effective FeCl3‐based initiating system has been developed to achieve living cationic polymerization of isobutylene (IB) using di(2‐chloro‐2‐propyl) benzene (DCC) or 1‐chlorine‐2,4,4‐trimethylpentane (TMPCl) as initiators in the presence of isopropanol (iPrOH) at ?80 °C for the first time. The polymerization with near 100% of initiation efficiency proceeded rapidly and completed quantitatively within 10 min. Polyisobutylenes (PIBs) with designed number‐average molecular weights (Mn) from 3500 to 21,000 g mol?1, narrow molecular weight distributions (MWD, Mw/Mn ≤ 1.2) and near 100% of tert‐Cl terminal groups could be obtained at appropriate concentrations of iPrOH. Livingness of cationic polymerization of IB was further confirmed by all monomer in technique and incremental monomer addition technique. The kinetic investigation on living cationic polymerization was conducted by real‐time attenuated total reflectance Fourier transform infrared spectroscopy. The apparent constant of rate for propagation (kpA) increased with increasing polymerization temperature and the apparent activation energy (ΔEa) for propagation was determined to be 14.4 kJ mol?1. Furthermore, the triblock copolymers of PS‐b‐PIB‐b‐PS with different chain length of polystyrene (PS) segments could be successfully synthesized via living cationic polymerization with DCC/FeCl3/iPrOH initiating system by sequential monomer addition of IB and styrene at ?80 °C. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
This article presents the first detailed account of the discovery that substituted epoxides can initiate the carbocationic polymerization of isobutylene. α‐Methylstyrene epoxide (MSE), 2,4,4‐trimethyl‐pentyl‐epoxide‐1,2 (TMPO‐1), 2,4,4‐trimethyl‐pentyl‐epoxide‐2,3 (TMPO‐2), and hexaepoxi squalene (HES) initiated isobutylene polymerization in conjunction with TiCl4. MSE, TMPO‐2, and HES initiated living polymerizations. A competitive reaction mechanism is proposed for the initiation and propagation. According to the proposed mechanism, initiator efficiency is defined by the competition between the SN1 and SN2 reaction paths. A controlled initiation with external epoxides such as MSE should yield a primary hydroxyl head group and a tert‐chloride end‐group. The presence of tert‐chloride end‐groups was verified by NMR spectroscopy, whereas the presence of primary hydroxyl groups was implied by model experiments. Multiple initiation by HES was verified by diphenyl ethylene end‐capping and NMR analysis; the resulting star polymer had an average of 5.2 arms per molecule. A detailed investigation of the reaction mechanism and the characterization of the polymers are in progress. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 444–452, 2000  相似文献   

8.
1-Chloro-1-phenylethyl-telechelic polyisobutylene (PIB) was synthesized by living carbocationic polymerization (LCCP). LCCP of isobutylene was induced by a difunctional initiator in conjunction with TiCl4 as coinitiator in the presence of N,N-dimethylacetamide in CH2Cl2/hexane (40:60 v/v) solvent mixture at −78°C. After complete isobutylene conversion a small amount of styrene was added leading to a rapid crossover reaction and thus to the attachment of short outer polystyrene (PSt) blocks to the PIB segment. Quenching the living polymerization of styrene yielded 1-chloro-1-phenylethyl terminal groups. The resulting telechelic polymer (Cl-PSt-PIB-PSt-Cl) is a potential new macroinitiator for atom transfer radical polymerization of a variety of vinyl monomers.  相似文献   

9.
The initiation and catalysis of isobutylene polymerization from several new metallocene and nonmetallocene initiator-catalysts that contain the noncoordinating anions (NCA), B(C6F5)4 and RB(C6F6)3, is reported. Application of these initiator-catalysts is extended to styrenics and vinyl ethers. The NCA does not contribute to termination and can be used in low concentrations compared with conventional Lewis acids. These qualities provide for isobutylene polymerizations that yield low Mn oligomers or high Mn polymer, dependent upon the initiator and polymerization conditions. Mechanistic aspects of initiation, transfer and termination as well as the participation of adventitious water are considered for each class of initiator-catalyst. The influence of the NCA on the stereoregularity of cationic styrene polymerization is also considered. NCAs do not cause the stereospecific carbocationic polymerization of styrene. We suggest that under conditions not conducive to carbocationic polymerization, NCA/metallocenes mediate the coordination polymerization of styrene. © 1997 John Wiley & Sons, Inc.  相似文献   

10.

A series of polyacrylate‐polystyrene‐polyisobutylene‐polystyrene‐polyacrylate (X‐PS‐PIB‐PS‐X) pentablock terpolymers (X=poly(methyl acrylate) (PMA), poly(butyl acrylate) (PBA), or poly(methyl methacrylate) (PMMA)) was prepared from poly (styrene‐b‐isobutylene‐b‐styrene) (PS‐PIB‐PS) block copolymers (BCPs) using either a Cu(I)Cl/1,1,4,7,7‐pentamethyldiethylenetriamine (PMDETA) or Cu(I)Cl/tris[2‐(dimethylamino)ethyl]amine (Me6TREN) catalyst system. The PS‐PIB‐PS BCPs were prepared by quasiliving carbocationic polymerization of isobutylene using a difunctional initiator, followed by the sequential addition of styrene, and were used as macroinitiators for the atom transfer radical polymerization (ATRP) of methyl acrylate (MA), n‐butyl acrylate (BA), or methyl methacrylate (MMA). The ATRP of MA and BA proceeded in a controlled fashion using either a Cu(I)Cl/PMDETA or Cu(I)Cl/Me6TREN catalyst system, as evidenced by a linear increase in molecular weight with conversion and low PDIs. The polymerization of MMA was less controlled. 1H‐NMR spectroscopy was used to elucidate pentablock copolymer structure and composition. The thermal stabilities of the pentablock copolymers were slightly less than the PS‐PIB‐PS macroinitiators due to the presence of polyacrylate or polymethacrylate outer block segments. DSC analysis of the pentablock copolymers showed a plurality of glass transition temperatures, indicating a phase separated material.  相似文献   

11.
Abstract

The living polymerization of styrene was achieved with the 2,4,4-trimethyl-2-pentyl chloride/TiCl4/MeCl:methylcyclohexane 40:60 v:v/?80°C polymerization system in the presence of di-tert-butylpyridine in concentrations comparable to the concentration of protic impurities. It was determined that the living nature of the polymerization is not due to carbocation stabilization. The polymerization is second order in TiCl4. Side reactions, namely polymerization by direct initiation and intermolecular alkylation, are operational, and a careful selection of experimental conditions is necessary to minimize their effect and obtain apparently living behavior. Polymerization by direct initiation can be minimized by increasing the initiator concentration, and intermolecular alkylation can be reduced by quenching the polymerization system when the conversion reaches close to 100%.  相似文献   

12.
The discovery that carbocations can be stabilized in super acid media, e.g., SbF5-SO2, etc., raises the possibility of “living” carbenium ion polymerization. Polymerization experiments with isobutylene and styrene carried out at high acid concentrations and in the virtual absence of nucleophile, i.e., under conditions conducive for living polymerization, failed to indicate a linear conversion vs molecular weight relationship and/or block copolymer formation. Additional model experiments with 2,4,4-trimethyl-1-pentene substantiate our conclusions that “living” carbocation polymerizations are unlikely to be produced by superacid chemistry.  相似文献   

13.
The carbocationic copolymerization of isobutylene (IB) and styrene (St), initiated by 2‐chloro‐2,4,4‐trimethylpentane/TiCl4 in 60/40 (v/v) methyl chloride/hexane at ?90 °C, was investigated. At a low total concentration (0.5 mol/L), slow initiation and rapid monomer conversion were observed. At a high total comonomer concentration (3 mol/L), living conditions (a linear semilogarithmic rate and Mn–conversion plots) were found, provided that the St concentration was above a critical value ([St]0 ~ 0.6 mol/L). The breadth of the molecular weight distribution decreased with increasing IB concentration in the feed, reaching Mw/Mn ~ 1.1. St homopolymerization was also living at a high total concentration, yielding polystyrene with Mn = 82,000 g/mol, the highest molecular weight ever achieved in carbocationic St polymerization. An analysis of this system by both the traditional gravimetric–NMR copolymer composition method and FTIR demonstrated penultimate effects. IB enrichment was found in the copolymers at all feed compositions, with very little drift at a high total concentration and above the critical St concentration. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1778–1787, 2007  相似文献   

14.
The reaction between some aliphatic aldehydes (acetaldehyde, propionaldehyde and butyraldehyde) and the typical stereospecific polymerization catalyst R2AlOCR′NPh has been studied in an attempt to elucidate the initiation mechanism of the polymerization reaction. The monomer-catalyst (1/1) complexes obtained from these aldehydes and R2AlOCR′NPh possess excellent catalytic activity towards the stereospecific polymerization. The structure of the complex in solution has been determined by NMR and IR spectra and compared with the structure determined by X-ray structure analysis. The presence of pentacoordinate aluminum in the complex has been demonstrated, for the first time, by X-ray studies.The structure of the aromatic monoaldehyde complex has also been studied and shown to be identical with that of the aliphatic aldehyde complex mentioned above. The chemical behavior of these aldehyde complexes towards Lewis bases and Lewis acids has also been studied. The aldehyde moiety of the R2AlOCR′NPh - MeCHO complex is liberated by the action of a strong Lewis base such as trimethylamine oxide and hexamethylphosphoramide, and is easily exchanged for another kind of aldehyde. The trimethylaluminum complex, Me2AlOCPhNPh · MeCHO · AlMe3, which only leads to the formation of amorphous polyacetaldehyde in contrast to Me2AlOCPhNPh · MeCHO, has been isolated and its structure determined by IR, NMR and X-ray studies in order to establish the relationship between its structure and its chemical behavior.  相似文献   

15.
Cationic polymerization of isobutylene (IB) in a mixture of methylene dichloride (CH2Cl2) and n-hexane (n-Hex) was conducted by using H2O as initiator, TiCl4 as co-initiator in the presence of strong external electron pair donor (ED), such as pyridine (Py), dimethylacetamide (DMA) or triethylamine (TEA). The effects of ED concentration, TiCl4 concentration, solvent polarity, polymerization temperature (T) and time on IB polymerization, molecular weight (MW) and molecular weight distribution (MWD, Mw/Mn) of polyisobutylene (PIB) products were investigated. The relative amount of polymer formed via uncontrolled initiation by conventional active species (I) decreased with increasing the solvent polarity, TiCl4 concentration and ED concentration in the polymerization. The desirable polymerization of IB with apparent absence of chain transfer reactions could be obtained by H2O/TiCl4 initiating system in the presence of ED under the appropriate reaction conditions. The external electron pair donors and TiCl4 did specially play important and effective roles on polymerization.  相似文献   

16.
Two structurally closely related three‐arm star blocks were synthesized and characterized: tCum(PIB‐b‐PNBD)3 and tCum(PNBD‐b‐PIB)3 [where tCum (tricumyl) stands for the phenyl‐1,3,5‐tris(‐2‐propyl) fragment and PIB and PNBD are polyisobutylene and polynorbornadiene, respectively]. The syntheses were accomplished in two stages: (1) the preparation of the first (or inner) block fitted with appropriate chlorine termini capable of initiating the polymerization of the second (or outer) block with TiCl4 and (2) the mediation of the polymerization of the second block. Therefore, the synthesis of tCum(PIB‐b‐PNBD)3 was effected with tCum(PIB‐Clt)3 [where Clt is tert‐chlorine and number‐average molecular weight (Mn) = 102,000 g/mol] by the use of TiCl4 and 30/70 CH3Cl/CHCl3 solvent mixtures at ?35 °C. PNBD homopolymer contamination formed by chain transfer was removed by selective precipitation. According to gel permeation chromatography, the Mn's of the star blocks were 107,300–109,200 g/mol. NMR spectroscopy (750 MHz) was used to determine structures and molecular weights. Differential scanning calorimetry (DSC) indicated two glass‐transition temperatures (Tg's), one each for the PIB (?65 °C) and PNBD (232 °C) phases. Thermogravimetric analysis thermograms showed 5% weight losses at 293 °C in air and at 352 °C in N2. The synthesis of tCum(PNBD‐b‐PIB)3 was achieved by the initiation of isobutylene polymerization with tCum(PNBD‐Clsec)3 (where Clsec is sec‐chlorine and Mn = 2900 g/mol) by the use of TiCl4 in CH3Cl at ?60 °C. DSC for this star block (Mn = 14,200 g/mol) also showed two Tg's, that is, at ?67 and 228 °C for the PIB and PNBD segments, respectively. It is of interest that the Clsec terminus of PNBD, , readily initiated isobutylene polymerization. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 740–751, 2003  相似文献   

17.
Organomagnesium compounds are well known initiators of anionic polymerization of polar monomers. However, we have found recently that in the presence of compounds with labile halogen atoms, e.g., benzyl chloride, they are also active initiators of cationic polymerization of isobutylene and styrene in hydrocarbon media. The tentative scheme of cationic initiation is suggested assuming the formation of benzyl cation connected with Mg2Cl5 counter-ion. The scheme is confirmed by quantum-chemical calculations and 1H NMR analysis of polyisobutylene. On addition of a polar monomer, N,N-dimethylacrylamide or 2-vinylpyridine, to Bu2Mg-BzCl-isobutylene polymerizing mixture, the former readily polymerizes. The mixture of homopolymers rather than block copolymers is formed in this case, however, this fact proves the co-existence of anionic and cationic centers in the system.  相似文献   

18.
The polymerizations of isobutylene initiated with the system tert-butyl chloride (t-BuCl)/SnCl4 and carried out in CH2Cl2 at −20°C and −78°C were investigated. The results obtained demonstrate that the presence of t-BuCl in the polymerizing system gives rise to a PIB product with a distinctly bimodal MWD. The higher-molecular weight (HMW) PIB, n = 20000, I=w/M̄n ∼ 2.5, is the result of existence of the protogenic initiation with residual water in the reaction system. The lower-molecular weight (LMW) PIB, n < 600, w/M̄n ≤ 1.4, is the product of polymerization initiated presumably with a complex t-BuCl-SnCl4-H2O. To elucidate the reaction mechanism of the polymerization initiated with the complex, a series of similar isobutylene polymerizations using the initiation system 2,5-dichloro-2,5-dimethylhexane (DDH)/SnCl4 was run and the oily LMW PIB samples were investigated by 1H-NMR. A new polymerization mechanism describing the role of DDH and t-BuCl is suggested.  相似文献   

19.
A novel dithiocarbamate, 2‐nonyl‐benzoimidazole‐1‐carbodithioic acid benzyl ester ( 1a ), was synthesized and successfully used in RAFT polymerization of styrene in bulk with thermal initiation. The effect of molar ratio of styrene to RAFT agent on the polymerization was investigated. The linear relationship between ln([M]0/[M]) and polymerization time indicated that the polymerization was first‐order with respect to monomer concentration. The molecular weights increased linearly with monomer conversion and were close to corresponding theoretical values. The molecular weight distributions (M w /M n ) kept very narrow (M w /M n <1.1) at a wide range of conversions of 14.2% to 73.3%. The obtained polymer had a strong ultraviolet absorption at 329 nm, which indicated that the 1a moiety remained at the end of polymer chain.  相似文献   

20.
Methyl methacrylate (MMA) and styrene (St) have been radically polymerized in the presence of chlorotrimethylsilane and CuCl/N,N,N′,N″,N″-pentamethyldiethyltriamine (Me3SiCl/CuCl/PMDETA). An analysis of the resultant polymers by 1H NMR discloses terminal silyl group and chlorine atom in all the obtained polymers. Kinetics studies have been carried out by measuring monomer conversions and polymer molecular weights against polymerization time. The results indicate that, for both MMA and St polymerizations, the monomer conversions exhibit a quasi-linear relationship with polymerization time, and the polymer number-average molecular weight (Mn) also increases with monomer conversion. The molecular weights of both PS and PMMA exceed one hundred thousand. Regardless of molecular weight, all the polymers show narrow molecular distributions (Mw/Mn = 1.2-1.5). These polymerization reactions are speculated to follow a mechanism similar to that of atom transfer radical polymerization (ATRP).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号