首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rheology and morphology of multi-walled carbon nanotube (MWNT)/polypropylene (PP) nanocomposites prepared via melt blending was investigated. The minor phase content of MWNT varied between 0.25 and 8 wt%. From morphological studies using a scanning electron microscopy technique a good dispersion of carbon nanotubes in the PP matrix was observed. The rheological studies were performed by a capillary rheometer, and mechanical properties of the nanocomposites were studied using a tensile and flexural tester. Both PP and its nanocomposites showed non-Newtonian behavior. At low shear rates the addition of MWNT content causes an increase in viscosity; however, viscosity is less sensitive to addition of MWNT content at higher shear rates. Flow activation energy for the nanocomposites was calculated using an Arrhenius type equation. From this calculation it was concluded that the temperature sensitivity of nanocomposites was increased by increasing of nanotube content. An increase in tensile and flexural moduli and Izod impact strength was also observed by increasing the MWNT content. From rheological and mechanical tests it was concluded that the mechanical and rheological percolation threshold is at 1.5 wt%.  相似文献   

2.
Linear low‐density polyethylene (LLDPE)/multiwalled carbon nanotube (MWNT) nanocomposites were prepared via melt blending. The morphology and degree of dispersion of nanotubes in the polyethylene matrix were investigated using scanning electron microscopy (SEM). Both individual and agglomerates of MWNTs were evident. The rheological behavior and mechanical and electrical properties of the nanocomposites were studied using a capillary rheometer, tensile tester, and Tera ohm‐meter, respectively. Both polyethylene and its nanocomposites showed non‐Newtonian behavior in almost the whole range of shear rate. Addition of carbon nanotubes increased shear stress and shear viscosity. It was also found that the materials experience a fluid‐solid transition below 1 wt% MWNT. Flow activation energy for the nanocomposites was calculated using an Arrhenius type equation. With increasing nanotube content, the activation energy of flow increases. A decrease of about 7 orders of magnitude was obtained in surface and volume resistivity upon addition of 5 wt% MWNT. In addition, a difference between electrical and rheological percolation thresholds was observed. The results confirm the expected nucleant effect of nanotubes on the crystallization process of polyethylene. A slight increase in Young's modulus was also observed with increasing MWNT content.  相似文献   

3.
A conducting polyaniline (PANI) was synthesized via an oxidative dispersion polymerization technique, using poly(vinyl alcohol) (PVA) as a polymeric stabilizer, in the presence of multi-walled carbon nanotubes (MWNT) purified in acidic solution, and dispersion stability of the MWNT in an aqueous solution of PVA was studied for different PVA concentrations. Their morphology was confirmed by a scanning electron microscope. Its electrorheological (ER) characteristics were also investigated by dispersing the PANI/MWNT composite particles in an insulating silicone oil. Its ER properties were examined using a rotational rheometer under varying applied DC electric field strengths, in which the ER fluid is generally composed of a suspension of conducting particles dispersed in an insulating fluid, which shows a rapid and reversible change in shear viscosity with an applied electric field. Synthesized PANI/MWNT composite particles are observed to enhance interparticular interactions, since the degree of polarization of PANI/MWNT composite particle increases with applied electric field strengths. The shear stresses of the PANI/MWNT nanocomposite based ER fluid increase with the electric field strength for a broad range of shear rates.  相似文献   

4.
《Composite Interfaces》2013,20(4-5):389-404
—Composites of polycarbonate (PC) with multi-wall carbon nanotubes (MWNT) of different concentrations are prepared by diluting a PC based masterbatch containing 15 wt% MWNT using melt mixing in a DACA-Micro Compounder (4 g scale). Electrical resistivity measurements indicate that the percolation of MWNT is reached between 1 and 1.5 wt%. In addition, melt rheology was applied as another sensitive method to detect the percolation of the nanotubes. Atomic Force Microscopy and visual observations of the composite dispersions in a PC-solvent were used to characterise the state of MWNT dispersion. Differential Scanning Calorimetry and Dynamic Mechanical Analysis were applied to detect changes in the glass transition temperature of PC as a result of processing and of MWNT interactions with the PC matrix including the state of dispersion. In addition, DMA confirmed the reinforcement effect of the nanotubes. The results show that the nanotube incorporation also influences the processing behaviour. Due to the enhancement in melt viscosity by adding nanotubes and the enhanced shear forces, the molecular weight of the PC in the composites is reduced as compared to PC extruded under the same conditions. This effect leads to changes in the glass transition temperature and modulus which counteracts the effects originating from the nanotube-polymer interaction.  相似文献   

5.
Embedding of carbon nanotubes in conducting polymeric matrices for various nanocomposites material is now a popular area. In this article, a concise chemical method has been described for the preparation of homogeneous nanocomposite of multi-walled carbon nanotube (MWNT)/polyaniline (PANI) by electrochemical codeposition. For this we functionalized the MWNTs via the diazotization reaction. This helped to disperse the nanotubes in aniline. The composite films were dispersed Pt by electrodeposition technique. The presence of MWNTs and platinum in the composite films was confirmed by XRD analysis and transmission electron microscopy (TEM). Four-point probe investigations revealed that the MWNT/PANI composite films exhibited a good conductivity. Cyclic voltammograms (CV) showed that Pt-modified MWNT/PANI composite films perform higher electrocatalytic activity and better long-term stability than Pt-modified pure PANI film toward formic acid oxidation. The results imply that the MWNT/PANI composite films as a promising support material improves the electrocatalytic activity for formic acid oxidation greatly.  相似文献   

6.
《Composite Interfaces》2013,20(3):193-201
Polycaprolactone (PCL) was covalently grafted on the surface of carbon nanotubes by a simple click reaction of propargyl-terminated PCL (propargyl-PCL) and carbon nanotubes (CNTs) containing azide groups (MWNT-N3). Propargyl-PCL was synthesized by the ring-opening polymerization of ε-caprolactone using propargyl alcohol and stannous octoate. MWNT-N3 was prepared from MWNT having 2-bromoisobutyryl groups (MWNT-Br) with sodium azide by azidation. The melting temperature of propargyl-PCL was shifted to the high temperature in PCL-grafted MWNT. The thermal stability of PCL-grafted MWNT was enhanced as compared to that of propargyl-PCL. PCL was coated on the surface of MWNT with a high density of PCL chains, which showed good solubility of PCL-grafted MWNT in organic solvents. PCL-grafted MWNT was characterized with FT-IR, 1H NMR, Raman, differential scanning calorimetry, thermogravimetric analysis, and scanning electron microscopy.  相似文献   

7.
Nanocomposites of two different grades of polyamide 6 (PA6) with organically modified nanoclay were prepared via melt compounding in a twin‐screw extruder. The rheological behavior, morphology and mechanical properties of the nanocomposites were studied using a capillary rheometer, x‐ray diffraction (XRD), tapping‐mode atomic force microscopy (AFM), and tensile and flexural tests. XRD patterns indicate that the organically modified layered silicate was well dispersed in the PA6 matrix. From the AFM images the surface roughness of PA6 slightly increases with addition of organoclay. The rheological studies showed that the prepared nanocomposites have shear thinning behavior, obeying the power law equation. Addition of organoclay increases the shear stress and shear viscosity. At high rate of shear deformation the viscosity of nanocomposites are comparable to those of the pure polyamides. The activation energy of flow decreases with increasing nanoclay content. For most of the prepared nanocomposites the activation energy values increase with increasing shear rate. The tensile strength and flexural modulus and strength of the nanocomposites increase with increase of nanoclay content, but the extension at yield decreases with increasing clay loading.  相似文献   

8.
Various compositions of ultrahigh molecular weight polyethylene/polypropylene (UHMWPE/PP) blends were prepared in decalin, with the rheological, mechanical, thermal, and surface properties of the blends being determined using the solution cast film. Viscosity and mechanical properties of the blends decreased below the additivity value with increasing PP content implying that PP molecules disturb the entanglement of UHMWPE. Contact angle of the blend films with a water drop increased with increasing content of PP. The atomic force microscope (AFM) images showed that the surface of cast UHMWPE was very smooth whereas that of cast PP was very uneven. For blends, the surface became rough and uneven with increasing content of PP. The melting temperature of PP (T mP) decreased in the blends with increasing UHMWPE content while that of UHMWPE (T mU) remained almost constant in blends.  相似文献   

9.
Different compositions of SBR/EPDM 50:50 blends containing multiple-walled carbon nanotubes (MWNT) as nanoparticulate fillers (0.5%–10%) were evaluated for radiation sensitivity and solvent permeability. The efficiency of radiation ***cross-linking was analyzed by gel-content and Charlesby–Pinner parameter measurements. ***Gamma-radiation-induced cross-linking extent was found to increase with radiation dose and MWNT concentration, which was reflected in different extents of swelling. Rigorous analysis of swelling and diffusion data, on the basis of the transport exponent (n) values and diffusion/relaxation rate indicated anomalous diffusion behavior for most of the nanocomposites. The swelling extent in different solvents was found to be a function of polymer-solvent interaction as well as stearic hindrance due to the structure/size of the solvent molecules. Polymer-filler interaction investigated by a Kraus plot indicated high reinforcement of the SBR/EPDM matrix on MWNT addition. There was no significant change in surface energy or hydrophilicity of the SBR/EPDM matrix on introduction of MWNT into it.  相似文献   

10.
We have investigated the damage in multi-wall carbon nanotubes (MWNTs) destroyed by electrical breakdown and focused ion beam bombardment (FIBB). The transport properties of a MWNT destroyed by electrical breakdown have been compared with those of a MWNT destroyed by FIBB. Also the Tomonaga–Luttinger transport (TLT) model has been applied to each type of destroyed MWNT. The MWNT destroyed by FIBB showed TLT behavior because of the weak destruction of the remaining walls. However, in the case of MWNTs destroyed by electrical breakdown, three-dimensional variable-range hopping (VRH) was observed in the low temperature transport. This suggests that the local damage has been caused by strong breakdown. There exists a clear difference between the effects of electrical breakdown and FIBB. Wall destruction by FIBB could be applied to control the one-dimensional transport of MWNTs.  相似文献   

11.
Photosensitive carbon nanotube (CNT) paste was prepared by 3-roll milling of multi-walled carbon nanotubes (MWNTs), UV-sensitive binder solution, and Ag as filler additives. Arrays of MWNT dots with a diode structure were fabricated by a combination of screen printing method and photolithography using these paste, and acetone utilized as the developer. The MWNT dots were well-defined and the organic binder materials in the dots were partially removed. The MWNT film without a heat treatment showed a high current density of 1.35 mA/cm2 at 3.25 V/μm and low turn-on field of 2.2 V/μm at 100 μA/cm2. Acetone can be used as an efficient developer to form patterns and to remove the organic residues in patterns, simultaneously.  相似文献   

12.
The properties of polymer matrix composites are related not only to the chemical composition of the materials but also to the processing equipment used for their preparation which has a direct influence on the microstructure of the composites. In this paper polypropylene (PP)/multi-walled carbon nanotubes (MWCNTs) nanocomposites were prepared by melt blending through a self-developed, eccentric rotor extruder (ERE). The structure and elongational deformation mechanism of an ERE were described in detail. The morphological, rheological, thermal and mechanical properties of the resulting PP/MWCNTs nanocomposites were investigated. Scanning electron microscopy (SEM) and rheological analysis showed that the MWCNTs were well dispersed in the PP matrix. The thermal stability was investigated by thermogravimetric analysis (TGA) and indicated that the addition of MWCNTs could effectively improve the thermal stability of pure PP. The percentage of crystallinity and tensile strength of the composites were improved as a result of the heterogeneous nucleation effect of the MWCNTs in the PP matrix. The research results revealed that the enhancement of the properties of PP/MWCNTs composites could be attributed to a better dispersion of the MWCNTs in the matrix as compared to samples prepared by conventional extrusion.  相似文献   

13.
Multi-walled carbon nanotubes (MWNT) were produced by chemical vapor deposition using yttria-stabilized zirconia/nickel (YSZ/Ni) catalysts. The catalysts were obtained by a liquid mixture technique that resulted in fine dispersed nanoparticles of NiO supported in the YSZ matrix. High quality MWNT having smooth walls, few defects, and low amounts of by-products such as amorphous carbon were obtained, even from catalysts with large Ni concentrations (>50 wt. %). By adjusting the experimental parameters, such as flux of the carbon precursor (ethylene) and Ni concentration, both the MWNT morphology and the process yield could be controlled. The resulting YSZ/Ni/MWNT composites can be interesting due to their mixed ionic-electronic transport properties, which could be useful in electrochemical applications. PACS 61.46.Fg; 81.15.Gh; 82.45.Jn  相似文献   

14.
Dispersion of carbon nanotubes in a polymer matrix is one of the most critical issues in carbon nanotube/polymer composites. In this paper we discuss the considerable improvement in the dispersion of multiwalled carbon nanotubes (MWNTs) in poly(vinyl alcohol) (PVA) matrix that was attained through gum arabic treatment. The mechanical properties of these MWNT/PVA composites show that only 2 wt% nanotube loading increases the tensile modulus by more than 130%.  相似文献   

15.
In‐situ polymerization was employed to achieve well‐dispersed carbon nanotube‐reinforced polyurethane composites. In‐situ polymerization showed predominant as primarily dispersal of carbon nanotubes in the matrix polymer according to scanning electron microscopy (SEM) observation and atomic force microscopy (AFM) images. Differential scanning calorimetry (DSC) results suggested that the addition of multi walled nanotubes (MWNTs) into polyurethane increased the rate of crystallization, this effect being more significant in polyurethane (PU)‐MWNT composite, which was prepared by an in‐situ polymerization process. The composites obtained by in‐situ polymerization showed enhanced mechanical properties as well as good electroactive shape memory. The original shape of the sample was almost recovered with bending mode when an electric field of 50 V was applied.  相似文献   

16.
Ternary blends of polypropylene/polycarbonate/poly(styrene-b-(ethylene-co-butylene)-b-styrene) (PP/PC/SEBS) with varying SEBS contents were produced via melt blending in a co-rotating twin-screw extruder. The phase morphology of the resulting ternary blends and its relationship with bending and impact behaviors were studied. Transmission optical microscopy (TOM) of the crack tip damage zone and scanning electron microscopy (SEM) of impact fractured surfaces were performed to characterize the fracture mechanism. With increasing SEBS content in the PP/PC/SEBS ternary blends, the number of PC/SEBS core-shell particles increased and the size of the core-shell particles enlarged. It was shown that with an SEBS content of 5%, the crack initiation resistance decreased and then was almost unchanged with further increase of SEBS content, while resistance to crack growth increased continuously with increasing of SEBS content. Preliminary analysis of the micromechanical deformation suggested that the high impact toughness observed for samples containing 20 and 30 wt% of SEBS could be attributed to cavitation of the rubbery shell and, consequently, shear yielding of the matrix. This plastic deformation absorbed a tremendous amount of energy. Due to low interfacial adhesion between PC particles and PP matrix in samples containing 5 and 10 wt% of SEBS, debonding occurred too early, so the occurrence of matrix shear yielding was delayed and resulted in premature interfacial failure and, hence, rapid crack propagation.  相似文献   

17.
Phase structures of immiscible polypropylene (PP)/polystyrene (PS) blends with different volume proportions, PP90/PS10, PP80/PS20, PP70/PS30, PP60/PS40, PP50/PS50, PP40/PS60, PP30/PS70, PP20/PS80, PP10/PS90, were observed by means of scanning electronic microscopy (SEM). The zero shear viscosities of the blends were determined according to a modified Carreau model by fitting the curves of static shear rate sweeps of blends tested at 190°C in a Stress Tech Fluids Rheometer. The results showed that the compositional dependence of zero shear viscosity of PP/PS deviated greatly from linear or log‐linear additivity. When PS was dispersed in a PP continuous phase, the blends showed negative deviation, while for blends with PP dispersed in a PS matrix, positive deviation was generated. When different theoretical equations of Nielsen, Utracki, Taylor, Frankel‐Acrivos (FA), Choi‐Schowalter (CS), and Han‐King (HK) were used to fit the experimental data of zero shear viscosities of blends, none of them was suitable for PP/PS blends. These experimental phenomena may result from the complex phase structures of the blends and their response to shear conditions, which are discussed in detail and compared with the experimental analysis.  相似文献   

18.
徐敏  陈群 《波谱学杂志》2007,24(4):469-474
合成了一种聚氧乙烯(PEO)接枝多壁碳纳米管(MWNT),利用固体NMR研究了接枝在MWNT表面的PEO链的聚集态结构. 实验观察到了MWNT的NMR信号, 并发现PEO的聚集态结构为非晶,这些现象说明PEO的醚氧原子中的n电子与MWNT上π体系中的电子之间存在着一种n-π相互作用,正是这种作用使得PEO不能结晶.  相似文献   

19.
Poly(trimethylene terephthalate)/polypropylene (PTT/PP) blends were prepared by melt blending. The rheology, morphology, melting, and mechanical properties of PTT/PP blends were investigated with and without the addition of polypropylene‐graft‐maleic anhydride (PP‐g‐MAH). The melt viscosity results showed that the fluid behavior of PTT/PP blends exhibited great disparity to that of PTT but similar to that of PP; the dispersed flexible PP phase in the blends served as a “ball bearing effect” under shear stress, which made the fluid resistance markedly reduced; by contrast, the relatively rigid PTT dispersed phase made only a small contribution to the viscosity. With 5 wt.% PP‐g‐MAH addition during melt processing, both the shear viscosity and the non‐Newtonian index of 70/30 PTT/PP blend were increased over that of the corresponding uncompatibilized one, whereas the shear viscosity of the 30/70 PTT/PP melt decreased slightly indicating that a considerable amount of PP‐g‐MAH did not act as compatibilizer but probably served as plasticizer.

With the increasing of the other component, the melting temperature of the PTT phase showed a slight decrease while the melting temperature of the PP phase showed a slight increase. 5 wt.% PP‐g‐MAH addition had little influence on the melting temperatures of the two components. When PP≤20 wt.%, the cold crystallization temperature of the PTT phase (Tcc (PTT‐phase)) showed little change with the composition; however, it shifted to higher temperature when PP≥30 wt.%. The variations of the Tcc (PTT‐phase), with and without PP‐g‐MAH, suggested that, when PTT was a minor component, the excess PP‐g‐MAH which did not act as compatibilizer might serve as a plasticizer that made the PTT's cold crystallization process to be easier. The SEM results indicated that, for the uncompatibilized blends, the interfaces from particles pulling‐out are clear and smooth, while, for compatibilized blends, the reactive products are at the interfaces. The mechanical properties suggested that PP‐g‐MAH did not result in significant improvement of the toughness of the blend, but the tensile strength increased markedly.  相似文献   

20.
Phase morphology formation plays an important role in the mechanical properties of polymer alloy fibers. The development of the blend morphology depends not only on the intrinsic properties of the component polymers but also on extrinsic factors such as viscosity ratio, λ, in the melt spinning process. The effects of blend component viscosity ratio on the morphological, rheological, and mechanical properties of polypropylene/poly(butylene terephthalate) (PP/PBT) melt spun alloy fibers were investigated. Accordingly, two kinds of PP as matrix phase and two kinds of PBT as dispersed phase, with various melt viscosity, were physically mixed and then blended during the extrusion step of melt spinning. SEM micrographs and rheological and mechanical properties evaluations showed that the morphology of PP/PBT alloy fibers strongly depend on the viscosity ratio, λ. Finer diameter PBT fibrils were observed for Viscosity ratios less than 1 (λ < 1) compared to samples with λ > 1. The best mechanical properties in alloy fiber samples were obtained for the viscosity ratio closest to unity (sample with λ = 0.9). The lowest differences among measured complex viscosities at various shear rates (0.1, 10, and 100 s?1) were also observed in samples with λ = 0.9. The results showed that the mechanical properties of alloy fiber samples are affected not only by morphological properties observed at different viscosity ratios but also by the properties of the individual polymer components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号