首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To study the effect of different surface structures on resultant mechanical and rheological properties, nano-CaCO3 particles were treated with isopropyl tri-stearyl titanate (H928), isopropyl tri-(dodecylbenz-enesulfonyl) titanate (JN198), and isopropyl tri-(dioctylpyrophosphato) titanate (JN114). Scanning electron microscopy (SEM) and dynamic mechanic analysis (DMA), carried out to characterize the effective interfacial interaction between the nano-CaCO3 particles and a poly(vinyl chloride) (PVC) matrix, indicated that JN114 treated nano-CaCO3 particles had the strongest interfacial interaction with a PVC matrix, while H928 treated nano-CaCO3 had the weakest. The rheological and mechanical properties of PVC/nano-CaCO3 composites were investigated as a function of surface structure and filler volume fraction. The tensile yield stress and elongation at break decreased with the increasing of calcium carbonate content while tensile modulus increased. PVC filled with JN114 treated nano-CaCO3 had the highest tensile modulus and tensile yield stress, while those filled with H928 treated nano-CaCO3 had the highest elongation at break at the same filler content. The impact strength of PVC/nano-CaCO3 composites increased with the increasing of CaCO3 content, and PVC composites filled with JN198 treated nano-CaCO3 particle had a higher impact strength than those with JN114 or H928 treated, with the value reaching 23.9 ± 0.7 kJ/m2 at 11 vol% CaCO3, four times as high as that of pure PVC. Rheological properties indicated that a suitable interfacial interaction and a good dispersion of inorganic filler in a PVC matrix could reduce the viscosity of PVC/nano-CaCO3 composites. The interfacial interaction was quantitatively characterized by semiempirical parameters calculated from the tensile strength of PVC/nano-CaCO3 composites to confirm the results from the SEM and DMA experiments.  相似文献   

2.
In this study HCl generation of polyvinyl (chloride) (PVC)/SiO2 composites during its combustion was investigated. SiO2 with different particle sizes were used as HCl absorbers and their HCl uptake ability results were compared to that of CaCO3. It was found that the amount of released HCl gas during PVC combustion decreased in the presence of SiO2. The HCl uptake ability of SiO2 improved with decreasing of its particle size. Although thermogravimetric analysis (TGA) results showed that SiO2 particles decreased the first thermal degradation temperature (T onset) of PVC by initiating dehydrochlorination of PVC at lower temperatures, SiO2 particles had more effective HCl uptaking ability than that of CaCO3. Scanning electron microscopy (SEM) micrographs showed that some aggregates whose size was less than 100 nm were formed when Si-25 nm was used as filler. When SiO2 with micron size was added to PVC as filler, more uniform and better distribution of the SiO2 on the surface was observed.  相似文献   

3.
Poly(vinyl chloride)/calcium carbonate (PVC/CaCO3) composites with micrometer or nanometer CaCO3 as fillers were prepared by the solution blending method. The thermogravimetric analysis (TGA) of the composite films conducted in N2 atmosphere showed that the addition of the CaCO3 fillers could improve their thermal stabilities. It was also found that the nanometer CaCO3 filler provided better thermal stabilities than the micrometer fillers even with a smaller amount. The mechanism of the improvements was investigated by a facile chemical analysis developed to examine the thermal stabilizing effect of calcium carbonate particles with different sizes in PVC/CaCO3 composites after the pyrolysis of the samples in an air atmosphere in an oven.  相似文献   

4.
Three methods were used to modify nano‐SiO2 particles with various interfaces and interfacial interactions between the particles and Poly(vinyl chloride) (PVC) matrix. The experimental results show that direct surface treatment of nano‐SiO2 particles with a silane coupling agent (KH‐550) is not effective for improving the mechanical properties of PVC/SiO2 composites. Both ultrasonic oscillations and high energy vibromilling improve the interfacial interactions between SiO2 particles and PVC matrix. With these methods, the aggregation of SiO2 particles was inhibited and a good dispersion of SiO2 particles in PVC matrix was obtained, which improved the mechanical properties of the PVC/SiO2 composite. The mechanical properties of the PVC/SiO2 composite with high energy vibromilling modified SiO2 particles were remarkably improved. Scanning electronic microscopy (SEM), transmission electronic microscopy (TEM), dynamic mechanical analysis (DMA), and theoretical calculations demonstrate these improvements.  相似文献   

5.
Propylene‐ethylene copolymer/calcium carbonate (CaCO3) composites (weight ratio=50/50) toughened with high density polyethylene (HDPE) were prepared using a twin‐screw extruder; the HDPE content in composites was in the range of 0–4 wt.%. The notched impact strength of propylene‐ethylene copolymer/CaCO3 composites with 1.5 wt.% HDPE was 46% higher than that of propylene‐ethylene copolymer/CaCO3 composites. Differential scanning calorimetry (DSC) experiments showed that good miscibility between propylene‐ethylene copolymer and HDPE enhanced the interpenetration of the macromolecules located in the interface. It was shown that debonding of the small HDPE particles within the propylene‐ethylene copolymer matrix resulted in the formation of small voids; the subsequent plastic deformation of the propylene‐ethylene copolymer matrix next to the voids thinned the ligaments and led to large energy consumption.  相似文献   

6.
The effects of hydrophobic magnesium hydroxide (Mg(OH)2) particles, prepared by a surface modification method with oleic acid, on the flame-retarding and mechanical properties of polyvinyl chloride (PVC) were investigated. Comparison between the use of modified and unmodified Mg(OH)2 in the preparation of PVC composites showed that the former could provide excellent optical and flame-retarding properties. The dispersion of the modified Mg(OH)2 particles in the PVC matrix was investigated through scanning electron microscopy. Compared with a composite containing unmodified Mg(OH)2, the rheological and impact strength properties of that containing the modified Mg(OH)2 filler were found to be significantly improved. These improvements were mostly attributed to the better dispersion of the modified Mg(OH)2 particles and the strong adhesion between the filler and matrix.  相似文献   

7.
《Composite Interfaces》2013,20(8-9):659-684
Talc, calcium carbonate (CaCO3), and kaolin hold considerable promise in the development of polymer composites for good mechanical properties and stability. Comparative studies on the usage of these minerals as single fillers in polypropylene (PP) have shown varying degrees of reinforcement due to their differences in terms of particle geometry, surface energy and affinity towards the matrix polymer. In this study, comparisons were made in terms of mechanical, thermal and weatherability properties between hybrid-filler PP composites (i.e. PP filled with either talc–CaCO3 or talc–kaolin hybrid filler combinations), with particular attention directed towards the effect of surface modification of the fillers. The talc/CaCO3 hybrid composites have shown exceptional performance in terms of flexural and impact properties. The contribution of talc in the talc–kaolin hybrid composite system has been significant in terms of enhancing the overall tensile and flexural properties. The ability of silane and titanate coupling agents in boosting the resistance of the composites to severe damage and degradation due to natural weathering has been shown.  相似文献   

8.
Electromagnetic wave absorbing properties of absorbing composites depend on the dielectric and magnetic loss generally. In this paper, using Fe3O4-coated amorphous carbon nanotubes (ACNTs-Fe3O4) fabricated using a chemical synthesis–hydrothermal treatment method as an absorber and polyvinyl chloride (PVC) as a matrix, electromagnetic and mechanical properties of ACNT-Fe3O4/PVC composite were investigated. The results showed that the dielectric and magnetic losses of ACNT-Fe3O4/PVC composite were significantly enhanced in 8.2–12.4 GHz compared to ACNT/PVC composite, which improved absorbing properties, while slightly changing the mechanical properties.  相似文献   

9.
Pimelic acid (PA) was used as a new surface modifier for CaCO3. The effects of PA treatment on the crystallization, morphology, and mechanical properties of PP/CaCO3 composites were investigated. Fourier transform infrared (FTIR) spectroscopy analysis revealed that PA bonded to CaCO3 and formed a calcium pimelate surface layer after reacting with CaCO3. The results of wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), and polarized light microscopy (PLM) proved that the PA treated CaCO3 induced a large amount of β -iPP and decreased the spherulitic size of PP. The results of scanning electron microscopy (SEM) showed that the PA treatment enhanced the interfacial adhesion between the filler and the matrix, indicating the improvement of the compatibility between PP and CaCO3. The toughness of the composites was improved by the more ductile β -form spherulites. When 1% of PA treated CaCO3 was added, the notched impact strength reached its maximum, a value of 19.79 kJ/m2, which was 3.64 times greater than that of the pure PP.  相似文献   

10.
The flexural properties of poly-L-lactide (PLLA) and polycaprolactone (PCL) shape memory composites filled with nanometer calcium carbonate (nano-CaCO3) were determined at room temperature. The results showed that with the increase of the nano-CaCO3 weight fraction the flexural moduli and strength of PCL/nano-CaCO3 composites increased roughly linearly and reached a maximum at the filler content of 2%, while the flexural strength of the composites decreased. The flexural moduli and strength of the composites decreased roughly linearly with increasing PLLA/PCL ratio for the PLLA/PCL/nano-CaCO3 composites.  相似文献   

11.
The synthesis of calcite (CaCO3) nanoparticles by mechanochemical reaction and subsequent heat treatment was investigated. A solid-state displacement reaction CaCl2 + Na2CO3 CaCO3+2NaCl was induced during mechanical milling of a CaCl2+ Na2CO3 powder mixture. Heat treatment of the as-milled powder at 350°C completed the reaction, forming crystalline CaCO3 nanoparticles separated from each other in a dry-salt matrix. A simple washing process to remove the matrix yielded calcite single phase ultrafine powder. The mean particle size was controlled by changing the volume fraction of CaCO3 in the matrix. 20% volume fraction yielded nanoparticles of ~ 140 nm in size, whereas 10% volume fraction led to ~ 80 nm size nanoparticles.  相似文献   

12.
Calcium carbonate (CaCO3)/iron oxide composites were synthesized through a simple one‐step impregnation procedure by mixing iron oxide nanoparticles (γ‐Fe2O3 and Fe3O4) of about 6 nm in size and CaCO3 microparticles (Φ = 2 µm–8 µm, vaterite phase). The morphology and structural properties of CaCO3, iron oxide nanoparticles and CaCO3/iron oxide composites were characterized as a function of low iron content (0 %w to 3.2 %w) by scanning electron microscopy and transmission electron microscopy, X‐ray diffraction and 57Fe Mössbauer spectrometry. The phase transformations induced by thermal treatment and laser irradiation were investigated in situ by X‐ray thermodiffraction (XRTD) and Raman spectroscopy. We have shown that the phase transformations observed by XRTD are also observed under laser irradiation as a consequence of the absorption of the laser irradiation by iron oxide nanoparticles. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Zinc oxide (ZnO) and alumina (Al2O3) particles are synthesized by the combustion of their volatilized acetylacetonate precursors in a premixed air–methane flame reactor. The particles are characterized by XRD, transmission electron microscopy, scanning mobility particle sizing and by measurement of the BET specific surface area. Pure (-)alumina particles appear as dendritic aggregates with average mobile diameter 43–93 nm consisting of partly sintered, crystalline primary particles with diameter 7.1–8.8 nm and specific surface area 184–229 m2/g. Pure zinc oxide yields compact, crystalline particles with diameter 25–40 nm and specific surface area 27–43 m2/g. The crystallite size for both oxides, estimated from the XRD line broadening, is comparable to or slightly smaller than the primary particle diameter. The specific surface area increases and the primary particle size decreases with a decreasing flame temperature and a decreasing precursor vapour pressure. The combustion of precursor mixtures leads to composite particles consisting of zinc aluminate ZnAl2O4 intermixed with either ZnO or Al2O3 phases. The zinc aluminate particles are dendritic aggregates, resembling the alumina particles, and are evidently synthesized to the full extent allowed by the overall precursor composition. The addition of even small amounts of alumina to ZnO increases the specific surface area of the composites significantly, for example, zinc aluminate particles increases to approximately 150 m2/g. The gas-to-particle conversion is initiated by the fast nucleation of Al2O3 or ZnAl2O3, succeeded by a more gradual condensation of the excess ZnO with a rate probably controlled by the cooling rate for the flame.  相似文献   

14.
Calcium carbonate (CaCO3) nanoparticles (9, 15, and 21 nm) were synthesized by solution spray of CaCl2 and NH4HCO3 with sodium lauryl sulfate (SLS) as a stabilizing agent, and their effect was studied on polybutadiene rubber (PBR) with variations in wt% loading (4, 8, and 12%). The results of PBR nanocomposites were compared with commercial CaCO3 (40 μm) and fly ash (75 μm) filled PBR microcomposites. Properties such as tensile strength, young modulus, elongation at break, glass transition temperature, decomposition temperature, and abrasion resistances were determined. Profound effect in properties was observed, because nanometric size of CaCO3 particles synthesized using solution spray technique. Maximum improvement in mechanical and flame retarding properties was observed at 8 wt% of filler loading. This increment in properties was more pronounced in 9-nm size CaCO3. The results were not appreciable above 8 wt% of nanofillers because of agglomeration of nanoparticles. In addition, an attempt was made to consider modeling Young’s modulus of PBR–nano CaCO3 which was predicted by modified Halpin–Tsai equation. It was observed that the predication by the Guth equation and modified Halpin–Tsai equation agreed very well with experimental, whereas the Halpin–Tsai equation can only applied to predict the modulus of rubber nanocomposites in the range of low addition of nanofiller, which agrees the Nielsen equation.  相似文献   

15.
The polyamide-6 pellets were mixed with nano-SiO2 particles surface-capped by 3-aminopropyltriethoxysilane (APS) via a melt blending route. PA-6 composites doped with surface-capped nano-SiO2 (designated as PAMNS, where AMNS refers to APS surface-capped nano-SiO2). AMNS and the silica samples (designated as EAMNS) extracted by acid etching from various PAMNS samples containing different concentration of amino functional groups on surface-capped nano-silica surfaces were characterized by means of Fourier transformation infrared spectrometry (FTIR), X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA). This aims at revealing the interfacial interaction between AMNS and PA-6 matrix and its effect on the mechanical properties of the filled PA-6 composites. The chemical features and microstructures of the PAMNS composites were analyzed by means of FTIR and transmission electron microscopy (TEM), respectively, while their mechanical properties were evaluated using standardized test rigs. Results demonstrate that the surface-modified nano-SiO2 particles were uniformly dispersed in PA-6 matrix. The residue silica extracted from various PAMNS samples showed characteristic FTIR absorbance peak of PA-6 and had larger weight losses than AMNS, implying that the polymeric matrix was chemically bonded with the nanofiller particles. The interfacial interactions are closely related to the concentration of functional groups in AMNS, and there might exist a critical concentration at which the strongest interfacial interactions could be reached. Beyond the critical concentration of the functional groups in AMNS, the mechanical properties of the filled PA-6 composites tended to decrease to some extent.  相似文献   

16.
The influence of malonic acid (MA) treatment of nano-calcium carbonate (CaCO3) on the crystallization, morphology, and mechanical properties of isotactic polypropylene (iPP)/nano-CaCO3 composites have been studied. The results of differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD) and polarized light microscopy (PLM) show that untreated nano-CaCO3 facilitates the formation of α phase, while MA treated nano-CaCO3 increases the relative content of β phase of iPP dramatically. The results of scanning electron microscopy (SEM) show that MA treated nano-CaCO3 has better dispersion in the matrix than the untreated one. The toughness of PP/MA treated nano-CaCO3 composite is improved drastically. When 2.5 wt% MA treated nano-CaCO3 is added, the Izod notched impact strength reaches its maximum, which is 2.89 times greater than that of the pure iPP.  相似文献   

17.
Polyurethane foams with various isocyanate/polyol ratios, reinforced with various amounts of nanosized TiO2, were prepared and their morphological properties were investigated. The nanoparticles were dispersed into the polyol component by stirring and then heating during ultrasonication to avoid particle agglomeration. Both scanning electron and transmission optical microscopes were used to evaluate the role of the nanosized TiO2 on the porous structure of the polyurethane foams. Cell size distributions were obtained by measuring the average cell diameters of the cells in the micrographs. To have a better assessment of nanoparticle effects on the foam morphology sample densities were measured using Archimedes law. For better understanding of microstructure evolution the heat release rate during the foaming process was characterized. The results showed that the values of cell size, cell density, apparent density and heat release rate depended on the ratio of isocyanate/polyol as well as TiO2 content.  相似文献   

18.
Rapid calcium (Ca) dissolution from nanostructured Ca phosphate and carbonate (CaCO3) powders may allow them to be absorbed in much higher fraction in humans. Nanosized Ca phosphate and CaCO3 made by flame-assisted spray pyrolysis were characterized by nitrogen adsorption, X-ray diffraction (XRD), Raman spectroscopy, and transmission electron microscopy. As-prepared nanopowders contained both CaCO3 and CaO, but storing them under ambient conditions over 130 days resulted in a complete transformation into CaCO3, with an increase in both crystal and particle sizes. The small particle size could be stabilized against such aging by cation (Mg, Zn, Sr) and anion (P) doping, with P and Mg being most effective. Calcium phosphate nanopowders made at Ca:P ≤ 1.5 were XRD amorphous and contained γ-Ca2P2O7 with increasing hydroxyapatite content at higher Ca:P. Aging of powders with Ca:P = 1.0 and 1.5 for over 500 days gradually increased particle size (but less than for CaCO3) without a change in phase composition or crystallinity. In 0.01 M H3PO4 calcium phosphate nanopowders dissolved ≈4 times more Ca than micronsized compounds and about twice more Ca than CaCO3 nanopowders, confirming that nanosizing and/or amorphous structuring sharply increases Ca powder dissolution. Because higher Ca solubility in vitro generally leads to greater absorption in vivo, these novel FASP-made Ca nanostructured compounds may prove useful for nutrition applications, including supplementation and/or food fortification.  相似文献   

19.
Supercritical carbon dioxide (SC-CO2) is used to prepare bioactive composites from powdered polylactide and nanosized hydroxyapatite for surface-selective laser sintering of three-dimensional tissue engineering structures. The mixture of powdered polylactide and nanosized hydroxyapatite and cannot be directly laser-sinter because of the impossibility of forming continuous filaments from sintered polymer particles. The use of composite particles for sintering formed in SC-CO2 medium makes it possible to eliminate this shortcoming and to form continuous structures. Analysis of the composition and mechanical tests of such structures showed that the sintered composite obtained is fairly uniform, without destruction centers, capable of withstanding the same mechanical loads as the pure polymer, and therefore, suitable for use in tissue scaffold engineering.  相似文献   

20.
In order to study the effect of the TiO2 particle crystalline composition (with different proportions of rutile and anatase crystals) on the dielectric properties of the composite, titanium dioxide (TiO2) particles and TiO2/poly(vinylidene fluoride‐co‐trifluoroethylene) [P(VDF‐TrFE)] composites were synthesized by a reflux method and the solution route, respectively. The results indicated that the optimum TiO2 particle crystalline composition is anatase content of 37% and rutile content of 63% for dielectric‐constant modifier applications. Furthermore, a dielectric constant of 25.7 with dielectric loss of 0.17 at 100 Hz at room temperature were obtained in the composite with 40 wt% TiO2 particles. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号