首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A detailed analysis of elementary reactions of carbocationic polymerization culminated in the prediction and subsequent experimental demonstration of quasiliving polymerization. Quasiliving polymers are formed in a system provided that the process of chain termination and chain transfer to monomer are absent or reversible, i.e., the propagating ability of the chain end is maintained throughout the experiment, and the molecular weight increases in proportion to the cumulative amount of monomer added. The chain end can be active (carbocation) or dormant (reactivable polymeric olefin or cation source). Chain transfer is suppressed by keeping the monomer concentration low. Quasiliving polymerizations are maintained by continuous slow feeding of dilute monomer to a charge containing the initiating or propagating species (quasiliving polymerization technique). A comprehensive kinetic scheme has been developed that describes quasiliving polymerization in quantitative terms. Quasiliving polymerization was demonstrated experimentally in the “H2O”/BCl3/α-methylstyrene and cumyl chloride/BCl3/α-methylstyrene systems. M n versus monomer input plots are linear over wide ranges, indicating quasiliving conditions, and poly(α-methylstyrenes) with M n > 2 × 105 have been obtained, Molecular weight distributions were found progressively to narrow and dispersion ratios M w/M n to decrease.  相似文献   

2.
The molecular weight distribution (MWD) of crystallizable polyphenylacetylene prepared near room temperature in the presence of ferric acetylacetonate and triethylaluminum was determined through use of fractions characterized by vapor pressure osmometry and gel permeation chromatography (GPC). The number- and weight-average molecular weights (M n and M w) are both less than the molecular weight corresponding to the maximum of the weight distribution function, which lacks a high molecular weight tail. M wandM n is less than is consistent with models allowing for chain termination characteristic of vinyl polymers. GPC elution volumes are much less than those characteristic of polystyrene of similar molecular weight, and the Mark-Houwink exponent is high (2.4 for M v 4800 to 6800). These data indicate more rodlike behavior than for polystyrene of equivalent molecular weight. The MWD and other data suggest intramolecular chain termination, possibly associated with the molecule's tendency to form paramagnetic defect states.  相似文献   

3.
Poly(α-methylstyrene-b-isobutyl vinyl ether-b-α-methylstyrene) triblock polymers have been prepared by blocking α-methyl-styrene (αMeSt) from biheaded quasiliving poly(isobuty1 vinyl ether) (PIBVE) cations generated with the bifunctional p-dicumyl chloride/AgSbF6 initiating system in methylene chloride solvent at -90°C. The products were fractionated with 2-propanol, a good solvent for PIBVE and a nonsolvent for PaMeSt. The 2-propanol-insoluble fractions had much higher molecular weights (M n = 30,500–69,100) than the starting PIBVE (M n =6,600–10,600) and contained 13–29 wt% IBVE together with 87–71 wt% αMeSt units. The 2-propanol-soluble fractions (M n = 7,300–11,600) contained ~90 wt% IBVE and ~10 wt% αMeSt units.  相似文献   

4.
5.
Quasiliving carbocationic polymerization of methyl vinyl ether (MVE) was achieved with the p-dicumyl chloride (p-DCC)/AgSbF6 initiator system by the slow and continuous monomer-addition (quasiliving) technique. A polar solvent (CH2Cl2) and a low reaction temperature (-70°C) were optimum for the quasiliving MVE polymerization. Under these conditions, the number-average molecular weight (M n) of poly(MVE) increased linearly with the cumulative weight of added monomer (WMVE), and linear M n versus WMVE plots passed through the origin. M n's were inversely proportional to the initial initiator (p-DCC) concentration. Reactions in a nonpolar solvent (toluene) at -70°C or in a polar solvent (CH2Cl2) at ?30°C resulted in deviations from these quasiliving characteristics. Block polymerization of MVE from quasiliving poly(isobutyl vinyl ether) dications by the quasiliving technique (p-DCC/AgSbF6 initiator, CH2Cl2 solvent,(-70°C) led to novel isobutyl vinyl ether (IBVE)-MVE block polymers in high yield (>93 wt%) and at high blocking efficiency. The block polymers, most likely poly(MVE-b-IBVE-b-MVE), having M n = 10,900–14,000 [M n(center block) = 6,200–9,0001, were soluble in n-heptane and insoluble in water, and gave hazy homogeneous solutions when dissolved in methanol at room temperature.  相似文献   

6.
The statement is often made in the polymer literature, without proof, that M zM wM n, where M z, M w, and M n are the z-, z weight-, and number-average molecular weights respectively. Four proofs of a generalization of these inequalities are given. It is shown that a higher-order molecular weight average is larger than a lower-order one, regardless of the form of the molecular weight distributions, except for the case when all the molecules have the same molecular weight. A brief discussion of the viscosity-average molecular weight is also included.  相似文献   

7.
A simple reusable apparatus for the synthesis of up to 40 g quantities of poly(styrene-b-isoprene) diblock copolymers of reasonably low (1.2 to 1.5) polydispersity has been described. The diblock copolymers synthesized were characterized by gel permeation chromatography (GPC), membrane osmometry, viscosimetry, and nuclear magnetic resonance (NMR) spectroscopy. Number-average molecular weights (M n) calculated from the raw GPC chromatographs of the diblock copolymers using the summation method and M versus elution volume plots for polystyrene and polyisoprene standards agree well with those measured experimentally with osmometry. It is suggested that for polydisperse block copolymers this method is simpler than the use of a universal calibration curve. Mark-Houwink constants K ans a for polyisoprene having 18% (1,2-), 66% (3,4-), and 16% (1,4-) microstructure were found to be 3.2 × 10?4 dL/g and 0.67, respectively, in THF at 25°C. In toluene at 30°C, K = 2.0 × 10?4 dL/g and α = 0.7 were obtained. The diblock copolymers had 26% (1,2-), 60% (3,4-), and 14% (1,4-) microstructure in the isoprene segments, and the values of K and a for these copolymers (PS > 50%, M 20.0 × 103) in THF at 25°C were 9.0 × 10?5 dL/g and 0.75. For M < 20.0 × 103 the value of α was 0.5. The experimental values of [η] were found to be lower than those calculated theoretically, presumably due to the polydisperse nature and the biellipsoidal configuration of the diblock copolymers.  相似文献   

8.
Abstract

A two-stage process was developed for the living polymerization of isobutylene (IB) employing di-tert-alcohol initiators in conjunction with BCl3 coinitiator in the first or initiation stage, followed by TiCl4 coinitiator in the second or propagation stage; the process was shown to yield high molecular weight (up to M n 20,000), narrow molecular weight distribution (MWD) M w/M n = 1.1–1.2) di-tert-chlorine telechelic polyisobutylenes (tCl-PIB-Clt). The initiation stage involves the homogeneous solution living polymerization of IB induced by the di-tert-alcohol/BCl3 combination in the presence of an electron donor such as N,N-dimethylacetamide in CH3Cl solvent at ?80°C and proceeds up to M n < 5000; this is followed by the propagation stage in which TiCl4 and the bulk of IB plus a sufficient amount of n-C6H14 are added to the charge to bring the solvent composition to CH3Cl/n-C6H14 60/40 v/v and the living polymerization is continued until high M n product is obtained. This two-stage process was developed because 1) it employs very inexpensive chemicals; 2) di-tert-alcohol/BCl3 combinations initiate living IB polymerization in CH3Cl but the product after reaching M n ≤ 5000 precipitates out of the CH3Cl solution, and di-tert-alcohol/BCl4 combinations do not initiate IB polymerization; and 3) di-tert-alcohol/BCl3 systems do not initiate (or only very slowly) the living polymerization of IB in CH3Cl/n-C6H14 mixtures, whereas similar TiCl4-based systems do. The polymerization remains living during both stages although the propagating species and solvent polarity are profoundly altered. The livingness of the system has been analyzed by kinetic experiments and the structure of the tCl-PIB-Clt product by routine spectroscopic means.  相似文献   

9.
A sensitive thermal dehvdrochlorination method has been used to determine quantitatively the HCl arising from -CH2C(CH3)2Cl endgroups in polyisobutylenes synthesized by BCb as the co-initiator. Quantitative endgroup analyses provided number-average molecular weights, M n and functionality, F n. Select M n data obtained by this endgroup analysis is in agreement with those obtained by osmometry, GPC, and NMR techniques; indeed, M n's obtained by this dehydrochlorination technique appears to be more accurate (2-3% error) than conventional methods (~5-10% error). The rate of HCl loss from -CH2C(CH3)2Cl termini is first order in HCl with an ΔEa of 19.1 kcal/mol in the 170-200°C range. This relatively low activation energy is most likely due to internal strain in the -CH2C(CH3)2CH2C(CH3)2Cl endgroup. These studies quantitatively substantiate earlier conclusions in regard to the mechanism of endgroup formation in BC13 coinitiated isobutylene polymerization.  相似文献   

10.
The aim of this research was to develop a quantitative treatment of the consequences of relatively slow initiation on M n and N (the number of molecules formed, Wp/M n , where Wp =weight of polymer formed) in living carbocationic polymerizations, particularly for the case of the incremental monomer addition (IMA) technique. This has been achieved by analysis of the effect of initiator efficiency (Ieff (%) = 100N/[I 0], where [I 0] = initiator input) on M n versus Wp , and N versus Wp plots. Three types of systems have been discerned: 1) Ieff equal to 100%; 2) Ieff constant but less than 100%; and 3) Ieff less than 100% but increasing with increasing number of monomer increments j by the IMA technique. Thus conditions can be found under which slowly initiating systems yield close to “ideal” product, i.e., one with M n = [M0 ]/[I0 ] and narrow molecular weight distribution (M w /M n ≈ 1.1). The corresponding equations and plots can be used to diagnose the mechanism. Subsequently, this quantitative analysis was used to describe a novel living system, trans‐2,5‐diacetoxy‐2,5‐dimethyl‐3‐hexene (DiOAcDMH6)/BCI3/isobutylene/CH3CI. This system produces linear t‐chlorine‐telechelic polyisobutylenes under homogeneous conditions. Surprisingly, cationation seems to be rate determining. This conclusion is illustrated by chemical equations.  相似文献   

11.
Abstract

Living copolymerization of the isobutylene (IB)-p-methylstyrene (pMeSt) monomer pair in combination with the constant copolymer composition (CCC) technique produces high molecular weight ( M n ≈ 100,000 g·mol?1) and narrow molecular weight distribution ( M w/ M n ≈ 1.45) compositionally uniform IB/pMeSt copolymer molecules in the industrially important IB/pMeSt = 97–99/3–1 mol% composition range. Syntheses were carried out with TiCl4 coinitiator in n-butyl chloride homogeneous solution at ?85°C by the use of the Leidenfrost reactor (i.e., by direct cooling of the charge with liquid nitrogen). In order to carry out the CCC technique it was necessary to obtain reliable copolymerization reactivity ratios. These investigations led to rIB = 0.5 ± 0.1 and r pMeSt = 10 ± 4. The attainment of CCC and living copolymerization conditions has been quantitatively demonstrated by dedicated diagnostic plots. Specifically, the attainment of CCC conditions was proven by the analysis of composite rate plots (comonomers input and corresponding copolymer formed versus time) and composition plots (comonomer composition in feed and copolymer formed versus weight of copolymer formed, W p), and living copolymerization was proven by linearly ascending number-average molecular weight of copolymer ( M n) versus W p plots starting at the origin.  相似文献   

12.
Fracture energy (G) of the symmetric amorphous polystyrene (PS)–PS interfaces that were partially healed at temperatures (T) below the glass transition temperature of the bulk ( $ T_{\text{g}}^{\text{bulk}} $ ) has been measured at ambient temperature and compared with those reported in the literature (G 0) for the symmetric PS–PS interfaces that were fully healed at T?>? $ T_{\text{g}}^{\text{bulk}} $ . It has been shown that G developed at T?<? $ T_{\text{g}}^{\text{bulk}} $ corresponds to G 0 for the polymers having the molecular weight larger than the entanglement molecular weight. This behaviour indicates that topological entanglements can be formed across the contact zone of the polymers with glassy bulk via the interdiffusion of the chain segments located in the viscoelastic contact layer.  相似文献   

13.
The mechanism of polymerization of p-tert-butylstyrene (ptBuSt) initiated by the cumyl chloride/BCl3 initiating system in CH2Cl2 at -50°C has been investigated. At and below ~0.4 M ptBuSt, quasiliving polymerizations proceed, i.e., initiation is instantaneous, termination is absent or reversible, and chain transfer to monomer can be suppressed or eliminated. In the quasiliving range the M n versus [ptBuSt]0 plot is linear and passes through the origin, and a M w/M n decreases much below 2.0 with decreasing [ptBuSt]. GPC traces change from broad multimodal to narrow monomodal and the color of polymerization charges change from colorless to golden-yellow with decreasing [ptBuSt]. The effect of temperature jump subsequent to monomer addition has been examined; however, it does not explain the peculiar monomer concentration effect on the mechanism. Changes in the ionicity may be responsible for this phenomenon.  相似文献   

14.
The synthesis of poly(styrene-b-isobutylenes) by the sequential addition of styrene and isobutylene has been accomplished. First a stream of styrene was added to a cumyl chloride/TiCl4 in nhexane/methylene chloride charge at -50°C under quasiliving conditions. After the polystyrene block has reached a desirable sequence-length (molecular weight), gaseous isobutylene was continuously introduced to the quasiliving polystyrene carbocation until the polyisobutylene block also reached a desirable molecular weight. The M n versus monomer input plot was uninterrupted and linear over both monomer introduction phases, indicating quasi-living conditions over the entire regime of block copolymer synthesis. The block copolymers have been characterized by selective solvent extraction and GPC, and their compositions determined by 1H-NMR spectroscopy.  相似文献   

15.
Densities, ??, and viscosities, ??, of binary mixtures of 2-methyl-2-propanol with acetone (AC), ethyl methyl ketone (EMK) and acetophenone (AP), including those of the pure liquids, were measured over the entire composition range at 298.15, 303.15 and 308.15?K. From these experimental data, the excess molar volume $V_{\mathrm{m}}^{\mathrm{E}}$ , deviation in viscosity ????, partial and apparent molar volumes ( $\overline{V}_{\mathrm{m},1}^{\,\circ }$ , $\overline{V}_{\mathrm{m},2}^{\,\circ }$ , $\overline{V}_{\phi ,1}^{\,\circ}$ and $\overline{V}_{\phi,2}^{\,\circ} $ ), and their excess values ( $\overline{V}_{\mathrm{m},1}^{\,\circ \mathrm{E}}$ , $\overline{V}_{\mathrm{m,2}}^{\,\circ \mathrm{ E}}$ , $\overline {V}_{\phi \mathrm{,1}}^{\,\circ \mathrm{ E}}$ and $\overline{V}_{\phi \mathrm{,2}}^{\,\circ \mathrm{ E}}$ ) of the components at infinite dilution were calculated. The interaction between the component molecules follows the order of AP > AC > EMK.  相似文献   

16.
Abstract

Estimation of molecular weights from GPC data is complicated when the polymer sample consists of a mixture of homopolymers or of statistical copolymers with nonuniform compositions. This is because sizes of solvated polymer coils depend on solvent interaction with both the homo-and hetero-units of the copolymers and because the extent of solvation of different homopolymers can differ. The overall degree of solvation may change effectively with composition and use of a single “average” set of Mark-Houwink constants in calibration procedures will then produce false molecular weight data from the GPC data. A new molecular weight average, M x, is defined to overcome this problem. This average can be determined from the GPC chromatogram and intrinsic viscosity of the sample in the GPC solvent. Mark-Houwink coefficients are not needed. M x lies between M w and M z.  相似文献   

17.
The polymerization of isobutylene has been investigated by the use of the steady, slow, continuous monomer addition technique in the presence of a variety of initiating systems, i.e., “H2O”/TiCl4, “H2O”/AlCl3, C6H5C(CH3)2Cl/TiCl4, p-ClCH2 C6(CH3)4* CH2Cl/AlCl3 at -50°C. Quasiliving polymerizations have been obtained with the “H2O” and C6H5(CH3)2Cl/TiC14 systems in 60/40 v/v n-hexane/methylene chloride solvent mixtures with very slow monomer input. After a brief “flash” polymerization, the M n of PIB increased linearly with the cumulative amount of monomer added (consumed); however, the number of polymer molecules formed also increased, indicating the presence of chain transfer to monomer. With the “H2O”/TiCl4 initiating system, M n,max was 56,000 and M w /M n < 2.0. By the use of the C6H5C(CH3)2CL/TiCl4 initiating system, quasiliving polymerization has been achieved and chain transfer could virtually be eliminated.  相似文献   

18.
Thermal decomposition and glass transition temperature studies have been carried out on poly-p-isopropylstyrene (PpiPrS) with a differential scanning calorimeter. The un-decomposed polymer as well as its decomposition products were analyzed by gel permeation chromatography (GPC), infrared spectroscopy (IR) and nuclear magnetic resonance (NMR). During isothermal treatments in the 25–150°C temperature range (α < 3%), the observed increase in M arose primarily from interchain linking between the longer radical-bearing chains. Beyond 315°C (α > 6%), the molecular weight increases result from crosslinking reactions between decomposed polymer and longer undecomposed chains. During interchain linking, the number of isomethyl groups (iso-CH3) increase. In the crosslinking reactions that take place at temperatures beyond 315°C, the number of iso-CH3 and terminal or α-methyl groups (α-CH3) both increase while the number of methylene groups (CH2) decreases. Activation energies of decomposition for various homologs of polystyrene (PS) obey the following order: EPS > EPpiPrS > EPpiPrαMeS ≥ EPαMeS. A comparison of the Tge values of PS with those of PpiPrS, poly-α-methylstyrene (PαMeS) and poly-p-isopropyl-α- methylstyrene (PpiPrαMeS) shows that the presence of the p-isopropyl groups lowers the Tg of PS as well as that of PaMeS by about 30–35° K.  相似文献   

19.
The densities, ρ, refractive indices, n D, and ultrasonic speeds, u, of binary mixtures of acetonitrile (AN) with poly(ethylene glycol) 200 (PEG200), poly(ethylene glycol) 300 (PEG300) and poly(ethylene glycol) 400 (PEG400) were measured over the entire composition range at temperatures (298.15, 303.15, 308.15 and 313.15) K and at atmospheric pressure. From the experimental data, the excess molar volumes, \( V_{\text{m}}^{\text{E}} \) , deviations in refractive indices, \( \Delta n_{\text{D}} \) , excess molar isentropic compressibility, \( K_{{s , {\text{m}}}}^{\text{E}} \) , excess intermolecular free length, \( L_{\text{f}}^{\text{E}} \) , and excess acoustic impedance, Z E, have been evaluated. The partial molar volumes, \( \overline{V}_{\text{m,1}} \) and \( \overline{V}_{\text{m,2}} \) , partial molar isentropic compressibilities, \( \overline{K}_{{s , {\text{m,1}}}} \) and \( \overline{K}_{{s , {\text{m,2}}}} \) , and their excess values over whole composition range and at infinite dilution have also been calculated. The variations of these properties with composition and temperature are discussed in terms of intermolecular interactions in these mixtures. The results indicate the presence of specific interactions among the AN and PEG molecules, which follow the order PEG200 < PEG300 < PEG400.  相似文献   

20.
Abstract

The living carbocationic polymerization and copolymerization of indene (Ind) and p-methylstyrene (pMeSt) have been investigated by the use of the 2-chloro-2,4,4-trimethylpentane (TMPCl)/TiCl4 and the 2-chloro-2-propylbenzene (cumyl chloride, CumCl)/BCl3 initiating systems in the presence of triethylamine (Et3N) as electron donor and CH3Cl or CH3Cl/QH14 mixed solvents at ?80°C. The TMPCl/TiCl4 initiating system gives essentially living copolymerization with slow initiation up to M n ≈ 20,000. The CumCl/BCl3 initiating system also induces living Ind homopolymerization up to at least M n ≈ 13,000. The homopolymerization of pMeSt with the latter initiating system, however, is not living as it shows evidence for a large amount of chain transfer. Thus, with the CumCl/BCl3 combination a small amount of chain transfer has apparently been observed in the presence of 50% of pMeSt in the charge. Reactivity ratio studies, fractionation, 1H- and 13C-NMR spectroscopy, and glass transition temperature (Tg ) investigations indicate that virtually random Ind-co-pMeSt copolymers of M n ≈ 20,000 can be obtained under suitable conditions. The Tg of the copolymers can be controlled between ≈115°C (the Tg of PpMeSt) and ≈194°C (the Tg of PInd) by the relative composition of the two monomers in the charge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号