首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A supersonic plasma jet was produced by a d.c. arc plasma generator operated at normal pressure and connected to a low-pressure (p∞ = 0.2-50 kPa) chamber via cylindrical nozzle with diameter of 2.5 mm. The argon gas flow rate was G = 0.025 to 0.35 g.s?1. In some experiments current IE ≦ 30 A passed coaxially through the initial part of the jet. Photographic records of the jet and pressure measurements are in agreement with theoretical predictions by a simple one-dimensional, gasdynamical model capable of self-consistent calculations throughout the plasma source/jet system. Periodic jet structure is observed over a wide range of experimental conditions, incl. in highly under-expanded flow. The jet expansion angle and Mach disc position vary with p∞, G and IE, but are nearly constant at different arcing currents.  相似文献   

2.
The objective of this study was to understand fluid flow in porous media. Understanding of fluid flow process in porous media is important for the geological storage of CO2. The high-resolution magnetic resonance imaging (MRI) technique was used to measure fluid flow in a porous medium (glass beads BZ-02). First, the permeability was obtained from velocity images. Next, CO2–water immiscible displacement experiments using different flow rates were investigated. Three stages were obtained from the MR intensity plot. With increasing CO2 flow rate, a relatively uniform CO2 distribution and a uniform CO2 front were observed. Subsequently, the final water saturation decreased. Using core analysis methods, the CO2 velocities were obtained during the CO2–water immiscible displacement process, which were applied to evaluate the capillary dispersion rate, viscous dominated fractional flow, and gravity flow function. The capillary dispersion rate dominated the effects of capillary, which was largest at water saturations of 0.5 and 0.6. The viscous-dominant fractional flow function varied with the saturation of water. The gravity fractional flow reached peak values at the saturation of 0.6. The gravity forces played a positive role in the downward displacements because they thus tended to stabilize the displacement process, thereby producing increased breakthrough times and correspondingly high recoveries. Finally, the relative permeability was also reconstructed. The study provides useful data regarding the transport processes in the geological storage of CO2.  相似文献   

3.
Internal magnetic gradient plays a significant role in Nuclear Magnetic Resonance (NMR) measurements of fluid saturated porous media. The quantitative characterization and application of this physical phenomenon could effectively improve the accuracy of NMR measurements and interpretations. In this paper, by using the equivalent magnetic dipole method, the three-dimensional distribution of internal induced magnetic field and its gradients in the randomly packed water saturated glass beads are quantitatively characterized. By simulating the diffusive motion of water molecules in porous media with random walk method, the computational dephasing effects equation related to internal gradients is deduced. Thereafter, the echo amplitudes are obtained and the corresponding T 2-G spectrum is also inverted. For the sake of verifying the simulation results, an experiment is carried out using the Halbach core analyzing system (B 0=0.18 T, G=2.3 T/m) to detect the induced internal field and gradients. The simulation results indicate the equivalent internal gradient is a distribution of 0.12–0.3 T/m, which matched well with the experimental results.  相似文献   

4.
Fluid density imaging is highly desirable in a wide variety of porous media measurements. The SPRITE class of MRI methods has proven to be robust and general in their ability to generate density images in porous media, however the short encoding times required, with correspondingly high magnetic field gradient strengths and filter widths, and low flip angle RF pulses, yield sub-optimal S/N images, especially at low static field strength. This paper explores two implementations of pure phase encode spin echo 1D imaging, with application to a proposed new petroleum reservoir core analysis measurement.In the first implementation of the pulse sequence, we modify the spin echo single point imaging (SE-SPI) technique to acquire the k-space origin data point, with a near zero evolution time, from the free induction decay (FID) following a 90° excitation pulse. Subsequent k-space data points are acquired by separately phase encoding individual echoes in a multi-echo acquisition. T2 attenuation of the echo train yields an image convolution which causes blurring. The T2 blur effect is moderate for porous media with T2 lifetime distributions longer than 5 ms. As a robust, high S/N, and fast 1D imaging method, this method will be highly complementary to SPRITE techniques for the quantitative analysis of fluid content in porous media.In the second implementation of the SE-SPI pulse sequence, modification of the basic measurement permits fast determination of spatially resolved T2 distributions in porous media through separately phase encoding each echo in a multi-echo CPMG pulse train. An individual T2 weighted image may be acquired from each echo. The echo time (TE) of each T2 weighted image may be reduced to 500 μs or less. These profiles can be fit to extract a T2 distribution from each pixel employing a variety of standard inverse Laplace transform methods. Fluid content 1D images are produced as an essential by product of determining the spatially resolved T2 distribution. These 1D images do not suffer from a T2 related blurring.The above SE-SPI measurements are combined to generate 1D images of the local saturation and T2 distribution as a function of saturation, upon centrifugation of petroleum reservoir core samples. The logarithm mean T2 is observed to shift linearly with water saturation. This new reservoir core analysis measurement may provide a valuable calibration of the Coates equation for irreducible water saturation, which has been widely implemented in NMR well logging measurements.  相似文献   

5.
Peng Xu  Shuxia Qiu  Jianchao Cai 《Physica A》2008,387(26):6471-6483
In this paper, an analysis of the radial flow in the heterogeneous porous media based on fractal and constructal tree networks is presented. A dual-domain model is applied to simulate the heterogeneous porous media embedded with a constructal tree network based on the fractal distribution of pore space and tortuosity nature of flow paths. The analytical expressions for seepage velocity, pressure drop, local and global permeability of the network and binary system are derived, and the transport properties for the optimal branching structure are discussed. Notable is that the global permeability (Kn) of the network and the volume fraction (fn) occupied by the network exhibit linear scaling law with the fractal dimension (Dp) of channel diameter bylogKn∼0.46Dp and logfn∼1.03Dp, respectively. Our analytical results are in good agreement with the available numerical results for steady-state soil vapor extraction and indicate that the fractal dimension for pore space has significant effect on the permeable properties of the media. The proposed dual-domain model may capture the characteristics of heterogeneous porous media and help understanding the transport mechanisms of the radial flow in the media.  相似文献   

6.
Nuclear magnetic resonance (NMR) plays a significant role in porous media analysis and petroleum exploration, but its response is significantly influenced by the internal magnetic field gradient in fluid saturated porous medium, which obviously limits the accuracy of rock core analysis and logging interpretation. The influential factors of the internal magnetic field gradient in formation and its influences on NMR response are studied in this paper, based on NMR mechanism through one- and two-dimensional core NMR experiments. The results indicate that the internal magnetic field gradient is positively correlated with the static magnetic field strength and the magnetic susceptibility difference between pore fluid and solid grains, while it presents negative correlation with pore radius. The internal magnetic field gradient produces an additional diffusion relaxation in hydrogen relaxation system and accelerates the attenuation of magnetization vector. As a result, T2 spectrum shifts to the left and NMR porosity and diffusion coefficient of the fluid could be inaccurate. This research sets a foundation for the NMR porosity correction and fluid distribution on T2-G maps based on the internal magnetic field gradient correction.  相似文献   

7.
To simulate flows around solid obstacles of complex geometries, various immersed boundary methods had been developed. Their main advantage is the efficient implementation for stationary or moving solid boundaries of arbitrary complexity on fixed non-body conformal Cartesian grids. The Brinkman penalization method was proposed for incompressible viscous flows by penalizing the momentum equations. Its main idea is to model solid obstacles as porous media with porosity, , and viscous permeability approaching zero. It has the pronounced advantages of mathematical proof of error bound, strong convergence, and ease of numerical implementation with the volume penalization technique. In this paper, it is extended to compressible flows. The straightforward extension of penalizing momentum and energy equations using Brinkman penalization with respective normalized viscous, η, and thermal, ηT, permeabilities produces unsatisfactory results, mostly due to nonphysical wave transmissions into obstacles, resulting in considerable energy and mass losses in reflected waves. The objective of this paper is to extend the Brinkman penalization technique to compressible flows based on a physically sound mathematical model for compressible flows through porous media. In addition to penalizing momentum and energy equations, the continuity equation for porous media is considered inside obstacles. In this model, the penalized porous region acts as a high impedance medium, resulting in negligible wave transmissions. The asymptotic analysis reveals that the proposed Brinkman penalization technique results in the amplitude and phase errors of order O((η)1/2) and O((η/ηT)1/43/4), when the boundary layer within the porous media is respectively resolved or unresolved. The proposed method is tested using 1- and 2-D benchmark problems. The results of direct numerical simulation are in excellent agreement with the analytical solutions. The numerical simulations verify the accuracy and convergence rates.  相似文献   

8.
In this paper, it is shown how free induction decay signals recorded in the Earth’s magnetic field from water protons confined in porous media can be used to derive transversal relaxation times (T 2) and their distributions. After T 2 determination of six sintered glass samples with various pore sizes, the common theoretical model can be fitted to the data set. The T 2 distribution of water protons in a bimodal porous system is analyzed and compared to mercury porosimetry results. The implications for the calculation of pore sizes and pore size distributions of porous media by this method are discussed.  相似文献   

9.
侯日立  彭建祥  经福谦 《物理学报》2009,58(9):6413-6418
用两步法构建了一个与温度和压力相关的适用于金属材料的剪切模量本构模型,其中的第一步任务是求得沿0 K等温线上剪切模量随压力的变化规律,即求得G1=G1P,0 K)的函数式.第二步是从0 K等温线上某一给定PG值出发,求出沿等压线上剪切模量随温度T变化的规律,从而最终求得剪切模量本构模型G=GP,T)的具体表达式.在这两个阶段的研究中都利用了超声波测量和第一性原理计算方法的研究结果.用铝为模型材料,对本模型的合理性进行了检验.结果表明,G的模型预测数据与试验测量及理论计算数据相比较,无论G的演化是沿冲击压缩轨迹、等熵压缩轨迹、等温压缩轨迹还是等压线轨迹,都能达到令人满意的程度,故可认为本模型具有良好的普适性和合理性. 关键词: 铝 本构模型 剪切模量 冲击波压缩  相似文献   

10.
Gravity driven instabilities in model porous packings of 1 mm diameter spheres are studied by comparing the broadening of the displacement front between fluids of slightly different densities in stable and unstable configurations. Water, water–glycerol and water–polymer solutions are used to vary independently viscosity and molecular diffusion and study the influence of shear-thinning properties. Both injected and displaced solutions are identical but for a different concentration of NaNO3 salt used as an ionic tracer and to introduce the density contrast. Dispersivity in stable configuration increases with polymer concentration – as already reported for double porosity packings of porous grains. Gravity-induced instabilities are shown to develop below a same threshold Péclet number Pe for water and water–glycerol solutions of different viscosities and result in considerable increases of the dispersivity. Measured threshold Pe values decrease markedly on the contrary with polymer concentration. The quantitative analysis demonstrates that the development of the instabilities is controlled by viscosity through a characteristic gravity number G (ratio between hydrostatic and viscous pressure gradients). A single threshold value of G accounts for results obtained on Newtonian and non-Newtonian solutions.  相似文献   

11.
ABSTRACT

Transport of fluids inside porous materials is relevant to many fields of application. Non-equilibrium molecular dynamics simulation is a powerful technique to explore fluid transport through porous media at the molecular scale. In this work, we compared two commonly used methods for studying pressure-driven transport. The first method was based on the application of an external force field on each fluid particle. The second method made use of two movable walls, acting as pistons, so as to generate transport. These two methods were used to study water transport inside a cylindrical hydrophilic silica nanopore. Several pressure differences were considered from 20 bar to 1000 bar. The results were compared to the theoretical Poiseuille fluid flow. No significant difference was found between the two methods. However, a substantial water flow enhancement was observed compared with the theoretical flow. Both the structural and dynamical properties of water remained unaffected by the applied pressure difference.  相似文献   

12.
An analysis of tortuosity for streamlines in porous media is presented by coupling the circle and square models. It is assumed that some particles in porous media do not overlap and that fluid in porous media is incompressible. The relationship between tortuosity and porosity is attained with different configurations by using a statistical method. In addition, the tortuosity fractal dimension is expressed as a function of porosity. Those correlations do not include any empirical constant. The percolation threshold and tortuosity fractal dimension threshold of porous media are also presented as: c = 0.32, D T c = 1.07. The predicted correlations of the tortuosity and the porosity agree well with the existing experimental and simulated results.  相似文献   

13.
The ultrasonic wave velocities in the restructuring of disperse media were measured using interference and pulsed techniques and the coefficient of reflection in suspensions of starch, Al2O3, and SiO2 particles, glass bulbs, their porous sediments, and composites of Fe3O4 particles in 10% gelatin aqueous solution at a frequency of 3 MHz. The experiments showed alternating variation in the concentration velocity coefficient during the transition of the dispersed phase concentration from the subpercolation to percolation region. The minimum ultrasonic wave velocity in the region of discrete clusters correlates with the ratio between the particle and matrix densities. The results obtained are explained using the Isakovich, Chaban, Rytov, Biot, Hausdorff, and other theories.  相似文献   

14.
Roberts  P. M. 《Acoustical Physics》2005,51(1):S140-S148
It has been observed repeatedly that low-frequency (1–500 Hz) seismic stress waves can enhance oil production from depleted reservoirs and contaminant extraction from groundwater aquifers. The physics coupling stress waves to fluid flow behavior in porous media is not understood, although numerous physical mechanisms have been proposed to explain the observations. To quantify the effects of low-frequency, dynamic-stress stimulation on multiphase fluid flow and in situ particle behavior in porous media, laboratory experiments were conducted with a core flow stimulation apparatus that allows for precise control and measurement of applied stress and strain, static confinement, and fluid flow parameters. Results are reported for experiments on stimulated single-phase and two-phase fluid flow behavior in 2.54-cm-diameter Berea sandstone cores. For all experiments, stimulation was applied to the cores in the form of sinusoidal, axial, mechanical stress coupled to the solid porous matrix at frequencies of 25 to 75 Hz. Applied stress RMS amplitudes ranged from 300 to 1200 kPa and, at these levels, produced coupled, pore-pressure fluctuations of much less than 1.2 to 4.8 kPa, respectively. During single-phase brine flow, stimulation increased the absolute permeability of the rock by 10–20%. This was caused by mobilizing in situ clay particles that were partially plugging the pore throats. During two-phase, steady-state, constant-rate flow of oil-brine and decane-brine mixtures, stimulation caused significant changes in the bulk fluid pressure drop across the core. The pressure changes showed a strong dependence on the viscosity of the nonwetting fluid phase (oil or decane) relative to the wetting phase (brine). This may indicate that relative changes in the mobility of wetting versus nonwetting fluid phases were induced by the dynamic stress. Under the specific experimental conditions used, pore-scale particle perturbation and altered wettability are possible physical mechanisms that can explain the results.  相似文献   

15.
To simulate flows around solid obstacles of complex geometries, various immersed boundary methods had been developed. Their main advantage is the efficient implementation for stationary or moving solid boundaries of arbitrary complexity on fixed non-body conformal Cartesian grids. The Brinkman penalization method was proposed for incompressible viscous flows by penalizing the momentum equations. Its main idea is to model solid obstacles as porous media with porosity, ϕ, and viscous permeability approaching zero. It has the pronounced advantages of mathematical proof of error bound, strong convergence, and ease of numerical implementation with the volume penalization technique. In this paper, it is extended to compressible flows. The straightforward extension of penalizing momentum and energy equations using Brinkman penalization with respective normalized viscous, η, and thermal, ηT, permeabilities produces unsatisfactory results, mostly due to nonphysical wave transmissions into obstacles, resulting in considerable energy and mass losses in reflected waves. The objective of this paper is to extend the Brinkman penalization technique to compressible flows based on a physically sound mathematical model for compressible flows through porous media. In addition to penalizing momentum and energy equations, the continuity equation for porous media is considered inside obstacles. In this model, the penalized porous region acts as a high impedance medium, resulting in negligible wave transmissions. The asymptotic analysis reveals that the proposed Brinkman penalization technique results in the amplitude and phase errors of order O((ηϕ)1/2) and O((η/ηT)1/4ϕ3/4), when the boundary layer within the porous media is respectively resolved or unresolved. The proposed method is tested using 1- and 2-D benchmark problems. The results of direct numerical simulation are in excellent agreement with the analytical solutions. The numerical simulations verify the accuracy and convergence rates.  相似文献   

16.
We have theoretically investigated the thermal characteristics of double-channel ridge–waveguide InGaAs/InAlAs/InP quantum cascade lasers (QCLs) using a two-dimensional heat dissipation model. The temperature distribution, heat flow, and thermal conductance (G th) of QCLs were obtained through the thermal simulation. A thick electroplated Au around the laser ridges helps to improve the heat dissipation from devices, being good enough to substitute the buried heterostructure (BH) by InP regrowth for epilayer-up bonded lasers. The effects of the device geometry (i.e., ridge width and cavity length) on the G th of QCLs were investigated. With 5 μm thick electroplated Au, the G th is increased with the decrease of ridge width, indicating an improvement from G th=177 W/K⋅cm2 at W=40 μm to G th=301 W/K⋅cm2 at W=9 μm for 2 mm long lasers. For the 9 μm×2 mm epilayer-down bonded laser with 5 μm thick electroplated Au, the use of InP contact layer leads to a further improvement of 13% in G th, and it was totally raised by 45% corresponding to 436 W/K⋅cm2 compared to the epilayer-up bonded laser with InGaAs contact layer. It is found that the epilayer-down bonded 9 μm wide BH laser with InP contact layer leads to the highest G th=449 W/K⋅cm2. The theoretical results were also compared with available obtained experimentally data.  相似文献   

17.
A clear understanding of two-phase fluid flow properties in porous media is of importance to CO2 geological storage. The study visually measured the immiscible and miscible displacement of water by CO2 using MRI (magnetic resonance imaging), and investigated the factor influencing the displacement process in porous media which were filled with quartz glass beads. For immiscible displacement at slow flow rates, the MR signal intensity of images increased because of CO2 dissolution; before the dissolution phenomenon became inconspicuous at flow rate of 0.8 mL min 1. For miscible displacement, the MR signal intensity decreased gradually independent of flow rates, because supercritical CO2 and water became miscible in the beginning of CO2 injection. CO2 channeling or fingering phenomena were more obviously observed with lower permeable porous media. Capillary force decreases with increasing particle size, which would increase permeability and allow CO2 and water to invade into small pore spaces more easily. The study also showed CO2 flow patterns were dominated by dimensionless capillary number, changing from capillary finger to stable flow. The relative permeability curve was calculated using Brooks-Corey model, while the results showed the relative permeability of CO2 slightly decreases with the increase of capillary number.  相似文献   

18.
赵明  郁伯铭 《物理学报》2011,60(9):98103-098103
提出了一个描述多孔介质孔隙尺寸分布的三维分形网络模型,利用该模型对多孔介质中的非混溶两相流驱替进行了数值模拟,研究了孔隙尺寸分布分维Df和两相流黏滞比M对驱替前沿指进型的影响,结果表明指进型容量维数Dh随着孔隙尺寸分布分维Df以及黏滞比M的增大而减少,并通过曲线拟合得到了它们之间的定量关系. 关键词: 多孔介质 三维网络 黏滞指进 非混溶两相流  相似文献   

19.
The structure and dynamics of a turbulent partially premixed methane/air flame in a conical burner were investigated using laser diagnostics and large-eddy simulations (LES). The flame structure inside the cone was characterized in detail using LES based on a two-scalar flamelet model, with the mixture fraction for the mixing field and level-set G-function for the partially premixed flame front propagation. In addition, planar laser induced florescence (PLIF) of CH and chemiluminescence imaging with high speed video were performed through a glass cone. CH and CH2O PLIF were also used to examine the flame structures above the cone. It is shown that in the entire flame the CH layer remains very thin, whereas the CH2O layer is rather thick. The flame is stabilized inside the cone a short distance above the nozzle. The stabilization of the flame can be simulated by the triple-flame model but not the flamelet-quenching model. The results show that flame stabilization in the cone is a result of premixed flame front propagation and flow reversal near the wall of the cone which is deemed to be dependent on the cone angle. Flamelet based LES is shown to capture the measured CH structures whereas the predicted CH2O structure is somewhat thinner than the experiments.  相似文献   

20.
A.G. Hunt  T.E. Skinner 《哲学杂志》2013,93(22):2921-2944
The purpose of this work is to predict the transport of non-sorbing solutes through water flow in the subsurface. We derive what we consider to be the first reliable calculations of the entire distribution of arrival times, W(t), for non-sorbing solutes in advective flow in strongly disordered porous media. Solutes treated can be contaminant plumes from any source or radioactive tracers, both experimentally and naturally generated. Our approach is microscopic and based on effects of disorder. It generates longitudinal dispersion (in the direction of flow) in the absence of diffusion. Effects on dispersion from a single capillary tube velocity distribution, known to produce long-tailed arrival time distributions, are also neglected. On the other hand, our calculations are based on effects generated from real porous media, such as wide pore-size distributions and complex connectivity. In particular, the calculation of the distribution of arrival times is based on a distribution of conserved fluxes and the known tortuosity of the associated geometrical paths. The results are found to be predictive when compared with simulations of two-dimensional flow on percolation structures, and appear to have relevance for experiments as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号