首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied the growth mode and morphology of Ni clusters on a TiO2(1 1 0) surface with a wide terrace using scanning tunneling microscopy (STM) at a low coverage (less than 3 atoms nm−2). The Ni clusters are formed on the terrace at the low coverage of 0.2 atoms nm−2. Their average dimensions are constant in three directions up to 1 atoms nm−2. The Ni clusters have an oval shape with average sizes of 1.8 nm (along [0 0 1]) × 1.4 nm (along (in the [1 1 0] directions). Above the coverage of 1.0 atoms nm−2, an increase in the cluster height occurs, retaining an almost constant lateral size. It is proposed that the interaction of the Ni cluster and the support surface regulates the Ni cluster size.  相似文献   

2.
The structure and formation of an ultrathin hexagonal boron nitride (h-BN) film on Pt(1 1 1) has been studied by a combination of scanning tunneling microscopy, low energy electron diffraction, low energy electron microscopy, X-ray absorption and high resolution core level spectroscopy. The study shows that a single boron nitride layer is formed on Pt(1 1 1), resulting in a coincidence structure. High resolution scanning tunneling microscopy (STM) images of the h-BN ultrathin film display only one of the atomic species in the unit cell. Probing the boron and nitrogen related local density of states by near edge X-ray absorption fine structure measurements we conclude that the nitrogen sublattice is visible in STM images. The growth of the single hexagonal boron nitride layer by vapourized borazine in the pressure range of 1×10-61×10-8 at 800 °C is further studied by low energy electron microscopy, and reveals that the number of nucleation sites and the perfection of the growth is strongly pressure dependent. A model for the single, hexagonal, boron nitride layer on Pt(1 1 1) is proposed.  相似文献   

3.
The adsorption of Pb on Cu(100) from 0 to 1 ML was investigated by UHV scanning tunneling microscopy. We obtained atomic resolution images of the different superstructures which appear at 300 K with increasing coverage (c(4 × 4), c(2 × 2) and c( √2)R45°). We confirm recent results and propose, partly on the basis of low temperature studies, new arguments in favour of an incorporation of lead atoms in the surface layer of copper for low coverage. We demonstrate that the c(4 × 4) superstructure corresponds to an ordered surface alloy of Pb3Cu4 composition, by investigating separately the alloying and de-alloying transitions. De-alloying occurs during the first-order transition between the c(4 × 4) and c(2 × 2) superstructures.  相似文献   

4.
The adsorption of chlorobenzene on Si(111)7 × 7 at room temperature was studied by scanning tunneling microscopy (STM). Selective chemisorption was observed at different adatom sites. It was found that the center adatoms were more reactive than the corner adatoms, and the faulted half of the unit cell was more reactive than the unfaulted. The mechanism is discussed in terms of the electronic and atomic structures in Si(111)7 × 7. Both preferences indicate that chlorobenzene was present initially in a mobile precursor state.  相似文献   

5.
Y. Uehara 《Surface science》2007,601(23):5643-5648
We have measured the scanning tunneling microscope (STM) light emission spectra of Ni(1 1 0)-streaky (1 × 2) surfaces. When the tip was fixed over atomic hydrogen adsorbed on the surfaces, two types of vibration-induced structure were observed in the STM light emission spectra. One is the periodic fine structures that were already reported in our previous paper [Y. Uehara, S. Ushioda, Phys. Rev. Lett. 92 (2004) 066102] and the other newly found in the present experiments is a stepwise structure that is located at the vibrational energy of hydrogen below the cutoff energy of the STM light emission. They are ascribed to different excitation mechanisms of the vibration in the STM light emission process; the periodic fine structures appear when the vibrating motion is directly excited by the electrons injected from the tip. Conversely, the stepwise structure is observed when it is excited by the electromagnetic fields confined in the tip-sample gap, i.e., by localized surface plasmons.  相似文献   

6.
K. W. Self  C. Yan  W. H. Weinberg   《Surface science》1997,380(2-3):408-416
Scanning tunneling microscopy and temperature-programmed desorption have been used to investigate the chemistry of water on Si(111)-(7 × 7) substrates which were misoriented 2° toward the [ 10] direction. Upon room temperature exposure to water, the adatoms of the (7 × 7) unit cell are still evident even after high exposures, implying that major modifications of the substrate do not occur. At high coverages, the distribution of reacted adatoms shifts from one controlled by dissociative adsorption across the adatom-rest atom pair to a statistical distribution based on the availability of dangling bonds. Desorption of the oxide layer which remains after water adsorption and the desorption of hydrogen have also been characterized. The oxide desorption occurs along well-defined wavefronts which originate at step edges and advance in directions consistent with the underlying substrate symmetry, primarily the [ 2] direction (i.e. the wave vector points in the [ 2] direction). In regions of the surface where the oxide has desorbed, the (7 × 7) unit cell can be seen clearly. Vacancies resulting from the loss of surface silicon atoms (via the etching) coalesce into islands in the clean regions of the terraces, but unlike desorption of oxide layers from Si(100), the desorption does not occur from the boundaries of these vacancy islands.  相似文献   

7.
We report a study of silane adsorption on the Si(111)7 × 7 surface. We have been interested in the first stages of chemisorption at room temperature. Reactive sites of the unit cell have been clearly identified on Scanning Tunneling Microscopy (STM) images: the reaction involves the rest atom and the adjacent adatom of the DAS structure with preferential adsorption on the center adatom. We propose an original chemisorption mechanism which leads to the formation of two SiH2 species by chemisorption and involves the breaking of Si---Si backbonds of the adatom.  相似文献   

8.
The temperature dependent adsorption of sulfur on TiO2(1 1 0) has been studied with X-ray photoelectron spectroscopy (XPS), scanning tunneling microscopy (STM), and low-energy electron diffraction (LEED). Sulfur adsorbs dissociatively at room temperature and binds to fivefold coordinated Ti atoms. Upon heating to 120°C, 80% of the sulfur desorbs and the S 2p peak position changes from 164.3±0.1 to 162.5±0.1 eV. This peak shift corresponds to a change of the adsorption site to the position of the bridging oxygen atoms of TiO2(1 1 0). Further heating causes little change in S coverage and XPS binding energies, up to a temperature of 430°C where most of the S desorbs and the S 2p peak shifts back to higher binding energy. Sulfur adsorption at 150°C, 200°C, and 300°C leads to a rich variety of structures and adsorption sites as observed with LEED and STM. At low coverages, sulfur occupies the position of the bridging oxygen atoms. At 200°C these S atoms arrange in a (3×1) superstructure. For adsorption between 300°C and 400°C a (3×3) and (4×1) LEED pattern is observed for intermediate and saturation coverage, respectively. Adsorption at elevated temperature reduces the substrate as indicated by a strong Ti3+ shoulder in the XPS Ti 2p3/2 peak, with up to 15.6% of the total peak area for the (4×1) structure. STM of different coverages adsorbed at 400°C indicates structural features consisting of two single S atoms placed next to each other along the [0 0 1] direction at the position of the in-plane oxygen atoms. The (3×3) and the (4×1) structure are formed by different arrangements of these S pairs.  相似文献   

9.
We studied the growth mode and electronic properties of ultra-thin silver films deposited on Ni(1 1 1) surface by means of scanning tunnelling microscopy (STM) and angle resolved photoemission spectroscopy (ARPES). The formation of the 4d-quantum well states (QWS) was analysed within the phase accumulation model (PAM). The electronic structure of the 1 ML film is consistent with the silver layer which very weakly interacts with the supporting surface. The line-shape analysis of Ag-4dxz,yz QWS spectrum support the notion of strong localization of these states within the silver layer. The asymmetry of the photoemission peaks implies that the decay of the photo-hole appears to be influenced by the dynamics of the electrons in the supporting surface.  相似文献   

10.
Adsorbed states of pyrimidine molecules on Pd(110) have been studied by a scanning tunneling microscope (STM). The pyrimidine molecules are preferentially adsorbed on terraces, not at steps. The isolated pyrimidine molecule shows a 0.6 nm × 0.6 nm rectangular shape with two parts of elongated protrusions. Two adsorption sites are observed: on-top site of the Pd[1 0] row and the midway between two [1 0] rows. Pyrimidine molecules show a strong tendency to form dimers even at a low coverage (0.01 ML), indicating that there is an attractive interaction between two adsorbed molecules.  相似文献   

11.
N. Zhu  T. Komeda 《Surface science》2007,601(8):1789-1794
We investigate the structure of submonolayer film of 4,4′-biphenyl dicarboxylic acid (BDA) molecules on Au(1 1 1)-22 × √3 reconstructed surface with the use of scanning tunneling microscopy (STM). The BDA molecules form ordered structures on Au(1 1 1) surface which are commensurate with the substrate. We have concluded that the molecule-molecule interaction is mainly through hydrogen bonding formed by a straight dimer of BDA molecules. The straight dimer can be expressed as 4s + 2t or its six crystallographic equivalents using the unit vectors of the gold substrate of s and t. The length of hydrogen bonding (O-H-O) is estimated to be 0.31 nm assuming nearest neighbor distance of gold atoms of 0.275 nm. The ordering shows a clear contrast with the case of BDA on Cu(1 0 0) surface [S. Stepanow, N. Lin, F. Vidal, A. Landa, M. Ruben, J.V. Barth, K. Kern, Nanoletters 5 (2005) 901] in which a square type of ordering of molecules is observed by the formation of hydrogen bonding between a carboxylate (COO) and a benzene ring. The clear difference of the ordered structure on Cu(1 0 0) and Au(1 1 1) surface demonstrates that the absence (presence) of deprotonation of carboxyl group of BDA molecule on Au(1 1 1) (Cu(1 0 0)) switches the straight and square type ordering of BDA molecules.  相似文献   

12.
We provide an overview of structure and reactivity of selected bimetallic single crystal electrodes obtained by the method of spontaneous deposition. The surfaces that are described and compared are the following: Au(1 1 1)/Ru, Pt(1 1 1)/Ru and Pt(1 1 1)/Os. Detailed morphological information is presented and the significance of this work in current and further study of nanoisland covered surfaces in the catalytic and spectroscopic perspective is highlighted. All surfaces were investigated by in situ STM and by electroanalytical techniques. The results confirm our previous data that nanosized Ru islands are formed with specific and distinctive structural features, and that the Ru growth pattern is different for Au(1 1 1) and Pt(1 1 1). For Au(1 1 1), Ru is preferentially deposited on steps, while a random and relatively sparse distribution of Ru islands is observed on terraces. In contrast, for Ru deposited on Pt(1 1 1), a homogeneous deposition over all the Pt(1 1 1) surface was found. Os is also deposited homogeneously, and at a much higher rate than Ru, and even within a single deposition it forms a large proportion of multilayer islands. On Au(1 1 1), the Ru islands on both steps and terraces reach the saturation coverage within a short deposition time, and the Ru islands grow to multilayer heights and assume hexagonal shapes. On Pt(1 1 1), the Ru saturation coverage is reached relatively fast, but when a single deposition is applied, Ru nanoislands of mainly monoatomic height are formed, with the Ru coverage not exceeding 0.2 ML. For Ru deposits on Pt(1 1 1), we demonstrate that larger and multilayer islands obtained in two consecutive depositions can be reduced in size--both in height and width--by oxidizing the Ru islands and then by reducing them back to a metallic state. A clear increase in the Ru island dispersion is then obtained. However, methanol oxidation chronoamperometry shows that the surface with such a higher dispersion is less active to methanol oxidation than the initial surface. A preliminary interpretation of this effect is provided. Finally, we studied CO stripping reaction on Pt(1 1 1)/Ru, Au(1 1 1)/Ru and on Pt(1 1 1)/Os. We relate CO oxidation differences observed between Pt(1 1 1)/Ru and Pt(1 1 1)/Os to the difference in the oxophilicity of the two admetals. In turn, the difference in the CO stripping reaction on Pt(1 1 1)/Ru and Au(1 1 1)/Ru with respect to the Ru islands is linked to the effect of the substrate on the bond strength and/or adlayer structure of CO and OHads species.  相似文献   

13.
Surface defects created on Ge(001) exposed to low energy Xe ions are characterized by in situ scanning tunneling microscopy (STM). The temperature of the sample during ion bombardment is 165 C and ion energies range from 20 to 240 eV. The ion collisions create defects (vacancies and adatoms) which nucleate and form vacancy and adatom islands. For fixed total vacancy creation, the vacancy island number density increases with increasing ion energy: the vacancy island number density is 1.6 × 10−20 cm−2 for 40 eV ion bombardment and increases to 4.4 × 10−20 cm−2 for 240 eV ion bombardment. The increased nucleation rate for vacancies is attributed to clustering of defects. The sputtering yield of Ge(001) is also measured by STM. The sputtering yield for 20 eV ions is approximately 10−3 per ion but the net yield for surface defects (sum of adatoms and vacancies) is an order of magnitude higher, 10−2, due to adatom-vacancy pair creation.  相似文献   

14.
Density functional theory is used to investigate the initial inclusion of sulfur into the subsurface interstitial sites of Pd(1 1 1) surface. Pure subsurface adsorption is found to be less energetically favorable than on-surface adsorption. The incorporation of sulfur into the metal becomes more favorable than continuous adsorption on the surface after a critical on-surface sulfur coverage. We find subsurface sulfur occupation to be energetically favorable after adsorption of more than half a monolayer on the surface. Occupation of subsurface sites induces a pronounced structural distortion of the Pd(1 1 1) surface. We find significant expansion of interplanar spacing between the uppermost surface metal layers and rearrangement of the S overlayer. The interplay between the energy cost due to structural distortion of Pd(1 1 1) and the energy gain due to bond formation for different structures is discussed.  相似文献   

15.
The growth of submonolayer Pt on Ru(0 0 0 1) has been studied with scanning tunneling microscopy. We focus on the island evolution depending on Pt coverage θPt, growth temperature TG and post-growth annealing temperature TA. Dendritic trigonal Pt islands with atomically rough borders are observed at room temperature and moderate deposition rates of about 5 × 10−4 ML/s. Two types of orientation, rotated by 180° and strongly influenced by minute amounts of oxygen are observed which is ascribed to nucleation starting at either hcp or fcc hollow sites. The preference for fcc sites changes to hcp in the presence of about one percent of oxygen. At lower growth temperatures Pt islands show a more fractal shape. Generally, atomically rough island borders smooth down at elevated growth temperatures higher than 300 K, or equivalent annealing temperatures. Dendritic Pt islands, for example, transform into compact, almost hexagonal islands, indicating similar step energies of A- and B-type of steps. Depending on the Pt coverage the thermal evolution differs somewhat: While regular islands on Ru(0 0 0 1) are formed at low coverages, vacancy islands are observed close to completion of the Pt layer.  相似文献   

16.
M. Wen 《Surface science》2009,603(1):216-220
The atomic positions of the oxygen-induced c(2 × 2)-O, (3 × 1)-O and (4 × 1)-O surface structures on Nb(1 0 0) are determined by first-principles electronic structure calculations within the density functional theory comparing experimentally observed scanning tunneling microscopy (STM) images. STM images of these surfaces are calculated on the basis of the theory of Tersoff and Hamann. The theoretical and experimental STM images of the oxygen-chemisorbed c(2 × 2)-O structural model agree well. However, only the oxide-covered (3 × 1)-O and (4 × 1)-O structural models with two layers of NbO and contraction of the unit length along longitudinal 〈1 0 0〉 direction by 10% result in the theoretical STM images that agree with the experimental ones.  相似文献   

17.
S.A. Teys 《Surface science》2006,600(21):4878-4882
The vicinal Si(1 1 1) surface, inclined towards the direction, was investigated by scanning tunnelling microscopy and spot profile analysing low energy electron diffraction. It has been established that the surface, consisting of regularly spaced triple steps and (1 1 1) terraces with a width equal to that of a single unit cell of the Si(1 1 1)-7 × 7 surface structure, has the (7 7 10) orientation. An atomic model of the triple step is proposed.  相似文献   

18.
The adsorption of CN on Cu(1 1 1), Ni(1 1 1) and Ni(1 0 0) has been investigated using density functional theory (DFT). While experimental studies of CN on Cu(1 1 1) show the molecular axis to be essentially parallel to the surface, the normally-preferred DFT approach using the generalised gradient approximation (GGA) yields a lowest energy configuration with the C-N axis perpendicular to the surface, although calculations using the local density approximation (LDA) do indicate that the experimental geometry is energetically favoured. The same conclusions are found for CN on Ni(1 1 1); on both surfaces bonding through the N atom is always unfavourable, in contrast to some earlier published results of ab initio calculations for Ni(1 1 1)/CN and Ni(1 0 0)/CN. The different predictions of the GGA and LDA approaches may lie in subtly different relative energies of the CN 5σ and 1π orbitals, a situation somewhat similar to that for CO adsorbed on Pt(1 1 1) which has proved challenging for DFT calculations. On Ni(1 0 0) GGA calculations favour a lying-down species in a hollow site in a geometry rather similar to that found experimentally and in GGA calculations for CN on Ni(1 1 0).  相似文献   

19.
The adsorption of several atomic (H, O, N, S, and C) and molecular (N2, HCN, CO, NO, and NH3) species and molecular fragments (CN, CNH2, NH2, NH, CH3, CH2, CH, HNO, NOH, and OH) on the (1 1 1) facet of platinum, an important industrial and fuel cell catalyst, was studied using self-consistent periodic density functional theory (DFT-GGA) calculations at a coverage of 1/4 ML. The best binding site, energy, and position, as well as an estimated diffusion barrier, of each species were determined. The binding strength for all the species can be ordered as follows: N2 < NH3 < HCN < NO < CO < CH3 < OH < NH2 < H < CN < NH < O < HNO < CH2 < NOH < CNH2 < N < S < CH < C. Although the atomic species generally preferred fcc sites, there was no clear trend in site preference by the molecular species or molecular fragments. The vibrational frequencies of all the stable adsorbates in their best and second best adsorption sites were calculated and found to be in good agreement with experimental values reported in the literature. Finally, the decomposition thermochemistry of NOH, HNO, NO, NH3, N2, CO, and CH3 was analyzed.  相似文献   

20.
Density functional theory slab calculations have been used to investigate the structure of the Ni(1 1 0)c(2 × 2)-CN adsorption phase. The results show excellent agreement with experimental quantitative determinations of this structure by photoelectron diffraction and low energy electron diffraction. In particular, they show that a lying-down orientation with the C–N axis along [0 0 1] perpendicular to the close-packed Ni rows on the surface is strongly favoured over end-on adsorption (with the C–N axis perpendicular to the surface). This geometry is also favoured over a lying-down geometry with the C–N axis aligned along the azimuth, as originally proposed for this system and supported by cluster calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号