首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The crisis phenomena of a Duffing–Van der Pol oscillator with a one-side elastic constraint are studied by the composite cell coordinate system method in this paper. By computing the global properties such as attractors, basins of attraction and saddles, the vivid evolutionary process of two kinds of crises: boundary crisis and interior crisis are shown. The boundary crisis is resulted by the collision of a chaotic attractor and a periodic saddle on the basin boundary. It is observed that there are two types of interior crises. One is caused by the collision of a chaotic attractor and a chaotic saddle within the interior of basin of attraction. The other one occurs because a period attractor collides with a chaotic saddle within the interior of basin of attraction. The saddles of system play an important role in the crisis process. The results show that this method is an efficient tool to perform the global analysis of elastic impact oscillators.  相似文献   

2.
We experimentally study the behaviour of a parametrically driven damped pendulum in a parameter region where a transient chaotic motion is observed. We reconstruct the chaotic saddle and a chaotic attractor near an interior crisis in a stroboscopic phase representation and give an estimation of the corresponding f() spectra.  相似文献   

3.
In this paper, bifurcations in dynamical systems with fuzzy uncertainties are studied by means of the fuzzy generalized cell mapping (FGCM) method. A bifurcation parameter is modeled as a fuzzy set with a triangular membership function. We first study a boundary crisis resulting from a collision of a fuzzy chaotic attractor with a fuzzy saddle on the basin boundary. The fuzzy chaotic attractor together with its basin of attraction is eradicated as the fuzzy control parameter reaches a critical point. We also show that a saddle-node bifurcation is caused by the collision of a fuzzy period-one attractor with a fuzzy saddle on the basin boundary. The fuzzy attractor together with its basin of attraction suddenly disappears as the fuzzy parameter passes through a critical value.  相似文献   

4.
Crisis transitions in excitable cell models   总被引:1,自引:0,他引:1  
It is believed that sudden changes both in the size of chaotic attractor and in the number of unstable periodic orbits on chaotic attractor are sufficient for interior crisis. In this paper, some interior crisis phenomena were discovered in a class of physically realizable dissipative dynamical systems. These systems represent the oscillatory activity of membrane potentials observed in excitable cells such as neuronal cells, pancreatic β-cells, and cardiac cells. We examined the occurrence of interior crises in these systems by two means: (i) constructing bifurcation diagrams and (ii) calculating the number of unstable periodic orbits on chaotic attractor. Bifurcation diagrams were obtained by numerically integrating the simultaneous differential equations which simulate the activity of excitable membranes. These bifurcation diagrams have shown an apparent crisis activity. We also demonstrate in terms of the associated Poincaré maps that the number of unstable periodic orbits embedded in a chaotic attractor suddenly increases or decreases at the crisis.  相似文献   

5.
Dynamics of a two-frequency parametrically driven duffing oscillator   总被引:1,自引:0,他引:1  
Summary We investigate the transition from two-frequency quasiperiodicity to chaotic behavior in a model for a quasiperiodically driven magnetoelastic ribbon. The model system is a two-frequency parametrically driven Duffing oscillator. As a driving parameter is increased, the route to chaos takes place in four distinct stages. The first stage is a torus-doubling bifurcation. The second stage is a transition from the doubled torus to a strange nonchaotic attractor. The third stage is a transition from the strange nonchaotic attractor to a geometrically similar chaotic attractor. The final stage is a hard transition to a much larger chaotic attractor. This latter transition arises as the result of acrisis, the characterization of which is one of our primary concerns. Numerical evidence is given to indicate that the crisis arises from the collision of the chaotic attractor with the stable manifold of a saddle torus. Intermittent bursting behavior is present after the crisis with the mean time between bursts scaling as a power law in the distance from the critical control parameter; τ ∼ (A-Ac). The critical exponent is computed numerically, yielding the value α=1.03±0.01. Theoretical justification is given for the computed critical exponent. Finally, a Melnikov analysis is performed, yielding an expression for transverse crossings of the stable and unstable manifolds of the crisis-initiating saddle torus.  相似文献   

6.
The bifurcations of the chaotic attractor in a Hodgkin–Huxley (H–H) model under stimulation of periodic signal is presented in this work, where the frequency of signal is taken as the controlling parameter. The chaotic behavior is realized over a wide range of frequency and is visualized by using interspike intervals (ISIs). Many kinds of abrupt undergoing changes of the ISIs are observed in different frequency regions, such as boundary crisis, interior crisis and merging crisis displaying alternately along with the changes of external signal frequency. And there are logistic-like bifurcation behaviors, e.g., periodic windows and fractal structures in ISIs dynamics. The saddle-node bifurcations resulting in collapses of chaos to period-6 orbit in dynamics of ISIs are identified.  相似文献   

7.
Bifurcations and Chaos in Duffing Equation   总被引:2,自引:0,他引:2  
The Duffing equation with even-odd asymmetrical nonlinear-restoring force and one external forcingis investigated.The conditions of existence of primary resonance,second-order,third-order subharmonics,m-order subharmonics and chaos are given by using the second-averaging method,the Melnikov method andbifurcation theory.Numerical simulations including bifurcation diagram,bifurcation surfaces and phase portraitsshow the consistence with the theoretical analysis.The numerical results also exhibit new dynamical behaviorsincluding onset of chaos,chaos suddenly disappearing to periodic orbit,cascades of inverse period-doublingbifurcations,period-doubling bifurcation,symmetry period-doubling bifurcations of period-3 orbit,symmetry-breaking of periodic orbits,interleaving occurrence of chaotic behaviors and period-one orbit,a great abundanceof periodic windows in transient chaotic regions with interior crises and boundary crisis and varied chaoticattractors.Our results show that many dynamical behaviors are strictly departure from the behaviors of theDuffing equation with odd-nonlinear restoring force.  相似文献   

8.
A general bienzymatic cyclic system including two autocatalytic loops is studied and used as a basic design principle for modelling extracellular matrix turnover. Using classical enzyme kinetic rates, the model is described by a set of four ordinary differential equations and numerically studied by bifurcation diagrams and Poincaré sections. We observe limit-cycle oscillations and chaotic behaviors arising from period-doubling cascades or intermittency. Chaotic oscillations originate from distinct strange attractors that undergo boundary and internal crisis. For some parameter values, the system presents several bistable areas, where a limit cycle coexists with another one or with a strange attractor. The dynamics are qualitatively modified when the weight of the autocatalytic loops on the system varies, resulting in the change in the number of attractors.  相似文献   

9.
In this paper, a Z4-equivariant quintic planar vector field is studied. The Hopf bifurcation method and polycycle bifurcation method are combined to study the limit cycles bifurcated from the compounded cycle with 4 hyperbolic saddle points. It is found that this special quintic planar polynomial system has at least four large limit cycles which surround all singular points. By applying the double homoclinic loops bifurcation method and Hopf bifurcation method, we conclude that 28 limit cycles with two different configurations exist in this special planar polynomial system. The results acquired in this paper are useful for studying the weakened 16th Hilbert's Problem.  相似文献   

10.
In infinite-dimensional spaces, we investigate a set-valued system from the image perspective. By exploiting the quasi-interior and the quasi-relative interior, we give some new equivalent characterizations of (proper, regular) linear separation and establish some new sufficient and necessary conditions for the impossibility of the system under new assumptions, which do not require the set to have nonempty interior. We also present under mild assumptions the equivalence between (proper, regular) linear separation and saddle points of Lagrangian functions for the system. These results are applied to obtain some new saddle point sufficient and necessary optimality conditions of vector optimization problems.  相似文献   

11.
Evolution of a crisis in a twin-well Duffing system under a harmonic excitation in presence of noise is explored in detail by the generalized cell mapping with digraph (GCMD in short) method. System parameters are chosen in the range that there co-exist chaotic attractors and/or chaotic saddles, together with their evolution. Due to noise effects, chaotic attractors and chaotic saddles here are all noisy (random or stochastic) ones, so is the crisis. Thus, noisy crisis happens whenever a noisy chaotic attractor collides with a noisy saddle, whether the latter is chaotic or not. A crisis, which results in sudden appear (or dismissal) of a chaotic attractor, together with its attractive basin, is called a catastrophic one. In addition, a crisis, which just results in sudden change of the size of a chaotic attractor and its attractive basin, is called an explosive one. Our study reveals that noisy catastrophic crisis and noisy explosive crisis often occur alternatively during the evolutionary long run of noisy crisis. Our study also reveals that the generalized cell mapping with digraph method is a powerful tool for global analysis of crisis, capable of providing clear and vivid scenarios of the mechanism of development, occurrence, and evolution of a noisy crisis.  相似文献   

12.
Global analysis in nonlinear dynamics means the study of attractors and their basins of attraction; meanwhile a lot of complex dynamical behaviors and new phenomena are concerned such as fractal basin boundary, Wada basin boundary, infinite unstable periodic orbits embedded in chaotic attractor, chaotic saddle and transient chaos, crises, riddled basin of attractor, stochastic global dynamics, etc.To analyze the global dynamics analytically is difficult and interesting while the results are few. Then, the numerical analysis for global dynamics is usually the main approach.Global analysis captures both the interest and imagination of the wider communities in various fields, such as mathematics, physics, meteorology, life science, computational science, engineering, medicine, and others.Emphasis is put mainly on the development in this global dynamics field in China.  相似文献   

13.
An attempt has been made to identify the mechanism, which is responsible for the existence of chaos in narrow parameter range in a realistic ecological model food-chain. Analytical and numerical studies of a three species food-chain model similar to a situation likely to be seen in terrestrial ecosystems has been carried out. The study of the model food chain suggests that the existence of chaos in narrow parameter ranges is caused by the crisis-induced sudden death of chaotic attractors. Varying one of the critical parameters in its range while keeping all the others constant, one can monitor the changes in the dynamical behaviour of the system, thereby fixing the regimes in which the system exhibits chaotic dynamics. The computed bifurcation diagrams and basin boundary calculations indicate that crisis is the underlying factor which generates chaotic dynamics in this model food-chain. We investigate sudden qualitative changes in chaotic dynamical behaviour, which occur at a parameter value a1=1.7804 at which the chaotic attractor destroyed by boundary crisis with an unstable periodic orbit created by the saddle-node bifurcation. Multiple attractors with riddled basins and fractal boundaries are also observed. If ecological systems of interacting species do indeed exhibit multiple attractors etc., the long term dynamics of such systems may undergo vast qualitative changes following epidemics or environmental catastrophes due to the system being pushed into the basin of a new attractor by the perturbation. Coupled with stochasticity, such complex behaviours may render such systems practically unpredictable.  相似文献   

14.
In this paper, we present a two species amensalism model with non-monotonic functional response and Allee effect on second species. Local and global stability of the boundary and interior equilibrium are investigated. By introducing the Allee effect, we show that the boundary equilibrium have changed from unstable node and saddle into saddle-node. Also, the system subject to an Allee effect has increased the time of reach to its stable steady-state solution, but has no influence on the final density of the two species. Our results are supported by numeric simulations.  相似文献   

15.
Some dynamical properties present in a problem concerning the acceleration of particles in a wave packet are studied. The dynamics of the model is described in terms of a two-dimensional area preserving map. We show that the phase space is mixed in the sense that there are regular and chaotic regions coexisting. We use a connection with the standard map in order to find the position of the first invariant spanning curve which borders the chaotic sea. We find that the position of the first invariant spanning curve increases as a power of the control parameter with the exponent 2/3. The standard deviation of the kinetic energy of an ensemble of initial conditions obeys a power law as a function of time, and saturates after some crossover. Scaling formalism is used in order to characterise the chaotic region close to the transition from integrability to nonintegrability and a relationship between the power law exponents is derived. The formalism can be applied in many different systems with mixed phase space. Then, dissipation is introduced into the model and therefore the property of area preservation is broken, and consequently attractors are observed. We show that after a small change of the dissipation, the chaotic attractor as well as its basin of attraction are destroyed, thus leading the system to experience a boundary crisis. The transient after the crisis follows a power law with exponent −2.  相似文献   

16.
We consider an algorithm called FEMWARP for warping triangular and tetrahedral finite element meshes that computes the warping using the finite element method itself. The algorithm takes as input a two- or three-dimensional domain defined by a boundary mesh (segments in one dimension or triangles in two dimensions) that has a volume mesh (triangles in two dimensions or tetrahedra in three dimensions) in its interior. It also takes as input a prescribed movement of the boundary mesh. It computes as output updated positions of the vertices of the volume mesh. The first step of the algorithm is to determine from the initial mesh a set of local weights for each interior vertex that describes each interior vertex in terms of the positions of its neighbors. These weights are computed using a finite element stiffness matrix. After a boundary transformation is applied, a linear system of equations based upon the weights is solved to determine the final positions of the interior vertices. The FEMWARP algorithm has been considered in the previous literature (e.g., in a 2001 paper by Baker). FEMWARP has been successful in computing deformed meshes for certain applications. However, sometimes FEMWARP reverses elements; this is our main concern in this paper. We analyze the causes for this undesirable behavior and propose several techniques to make the method more robust against reversals. The most successful of the proposed methods includes combining FEMWARP with an optimization-based untangler.  相似文献   

17.
18.
This paper is concerned with a system of equations that describes the motion of two point vortices in a flow possessing constant uniform vorticity and perturbed by an acoustic wave. The system is shown to have both regular and chaotic regimes of motion. In addition, simple and chaotic attractors are found in the system. Attention is given to bifurcations of fixed points of a Poincaré map which lead to the appearance of these regimes. It is shown that, in the case where the total vortex strength changes, the “reversible pitch-fork” bifurcation is a typical scenario of emergence of asymptotically stable fixed and periodic points. As a result of this bifurcation, a saddle point, a stable and an unstable point of the same period emerge from an elliptic point of some period. By constructing and analyzing charts of dynamical regimes and bifurcation diagrams we show that a cascade of period-doubling bifurcations is a typical scenario of transition to chaos in the system under consideration.  相似文献   

19.
Complex economic dynamics is studied by a forced oscillator model of business cycles. The technique of numerical modeling is applied to characterize the fundamental properties of complex economic systems which exhibit multiscale and multistability behaviors, as well as coexistence of order and chaos. In particular, we focus on the dynamics and structure of unstable periodic orbits and chaotic saddles within a periodic window of the bifurcation diagram, at the onset of a saddle-node bifurcation and of an attractor merging crisis, and in the chaotic regions associated with type-I intermittency and crisis-induced intermittency, in non-linear economic cycles. Inside a periodic window, chaotic saddles are responsible for the transient motion preceding convergence to a periodic or a chaotic attractor. The links between chaotic saddles, crisis and intermittency in complex economic dynamics are discussed. We show that a chaotic attractor is composed of chaotic saddles and unstable periodic orbits located in the gap regions of chaotic saddles. Non-linear modeling of economic chaotic saddle, crisis and intermittency can improve our understanding of the dynamics of financial intermittency observed in stock market and foreign exchange market. Characterization of the complex dynamics of economic systems is a powerful tool for pattern recognition and forecasting of business and financial cycles, as well as for optimization of management strategy and decision technology.  相似文献   

20.
A discrete genetic toggle switch system obtained by Euler method is first investigated. The conditions of existence for fold bifurcation and flip bifurcation are derived by using center manifold theorem and bifurcation theory. The numerical simulations, including bifurcation diagrams, phase portraits, and computation of Lyapunov exponents, not only show the consistence with the theoretical analysis but also exhibit the rich and complex dynamical behavior. We show the period 3 to 13 windows in different chaotic regions, period-doubling bifurcation or inverse period-doubling bifurcation from period-2 to 12 orbits leading to chaos, different kind of interior crisis and boundary crisis, intermittency behavior, chaotic set, chaotic non-attracting set, coexistence of period points with invariant cycles, and so on. The influence of the amplitude and frequency of excitable forcing on the system are also first considered by using numerical simulation. A different type of quasiperiodic orbits, jumping behaviors of quasiperiodic set from one set to another set, and the processes from quasiperiodic orbits to strange non-chaotic attractor are found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号