首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
According to X-ray diffraction data, the STK catalyst is a mixture of Fe2O3 and Cr2O3. The temperature-programmed reduction spectrum exhibited two reduction peaks: one, with T max = 250°C, corresponds to the reduction process Cr2O3 → CrO and the other, with T max = 360°C, corresponds to the reduction Fe2O3 → Fe3O4. The results of thermal desorption measurements suggest that the individual adsorption of oxygen on the surface of the STK catalyst is low; in this case (according to IR-spectroscopic data), an atomic form is the main species. Surface nitrite-nitrate complexes are formed upon the adsorption of NO. Nitrite and nitrate complexes desorbed at maximum rates at 105 and 160°C, respectively. Unlike the NTK-10-1 catalyst, the NO species, which desorbed at high temperatures (250–400°C), was absent from the surface of STK. Propane adsorbed at room temperature to form surface compounds containing an acetate group. The interaction of propane with the surface of the STK catalyst at reaction temperatures resulted in strong surface reduction.__________Translated from Kinetika i Kataliz, Vol. 46, No. 4, 2005, pp. 550–558.Original Russian Text Copyright © 2005 by Tret’yakov, Burdeinaya, Zakorchevnaya, Matyshak, Korchak.  相似文献   

2.
Quantitative spectrokinetic in situ measurements showed that the nitrate complex is an intermediate species in the process of the selective reduction of nitrogen oxides by propane on the commercial NTK-10-1 catalyst at T > 150°C. A nitroorganic compound is formed via the next step and is capable of transforming into the products of complete oxidation and into nitrogen oxides in the oxidative medium. At T < 150°C, the reaction occurs via the formation and further transformation of the nitrite complex. This process explains the unexpectedly high activity of the catalyst at low temperatures.  相似文献   

3.
According to X-ray phase and spectral analyses, the NTK-10-1 catalyst is a mixture of ZnO, CuO, NiO, ZnAl2O4, CuAl2O4, and CaCO3. Under conditions of selective reduction of nitrogen oxides by propane, nitrite and nitrate complexes are formed on the surface of the NTK-10-1 catalyst. With an increase in temperature, nitrite complexes transform to nitrate complexes at a rate that decreases in the presence of propane in the gas phase. Propane adsorption is an activated process in which oxygen plays an important role. The results of temperature-programmed reduction showed that oxygen readily desorbs from the catalyst surface even under oxidative conditions.  相似文献   

4.
Toward achieving selective catalytic reduction of NO x by hydrocarbons at low temperatures (especially lower than 200 °C), C2H2 selective reduction of NO x was explored on H-mordenite (H-MOR) catalysts in dielectric barrier discharge (DBD) plasma. This work reported significant synergistic effects of DBD plasmas and H-MOR catalysts for C2H2 selective reduction of NO x at low temperatures (100–200 °C ) and across a wide range of O2 content (0–15%). At 100 °C, NO x conversions were 3.3, 11.6 and 66.7% for the plasma alone, catalyst alone and in-plasma catalysis (IPC) cases (with a reactant gas mixture of 500 ppm NO, 500 ppm C2H2, 10% O2 in N2, GHSV = 12,000 h−1 and input energy density of 125 J L 1), respectively. At 200 °C, NO x conversions were 3.8, 54.0 and 91.4% for the above three cases, respectively. Also, strong signals of hydrogen cyanide (HCN) byproduct were observed in the catalyst alone system by an on-line mass spectrometer. By contrast, almost no HCN was detected in the IPC system.  相似文献   

5.
6.
Metal oxides are stable and highly durable catalysts for the selective catalytic reduction (SCR) of NO by hydrocarbons and potential candidates for practical use. This review focuses on the development as well as the fundamental understanding of metal oxide based catalysts for selective reduction of NO by hydrocarbons. Our studies on the SCR-deNOx properties of Ga2O3/Al2O3, Cu-Al2O3, and Ag-Al2O3 catalysts are presented and it is attempted to demonstrate the advantages of this type of catalysts. On the basis of several spectroscopic characterizations, the effect of important factors, such as dispersion, coordination, and the electronic states of the metal cation, on the intrinsic catalytic activity are quite well clarified. From the in situ FTIR results, the reaction mechanism is understood in terms of formation and reaction of surface molecules. The structural and kinetic information obtained at the molecular level provides a useful strategy for designing better deNOx catalysts using metal oxides.  相似文献   

7.
8.
Atmospheric pressure air plasma discharges generate potential antimicrobial agents, such as nitrogen oxides and ozone. Generation of nitrogen oxides was studied in a DC-driven self-pulsing (1–10 kHz) transient spark (TS) discharge. The precursors of NOx production and the TS characteristics were studied by nanosecond time-resolved optical diagnostics: a photomultiplier module and a spectrometer coupled with fast intensified camera. Thanks to the short (~10–100 ns) high current (>1 A) spark current pulses, highly reactive non-equilibrium plasma is generated. Ozone was not detectable in the TS, probably due to higher gas temperature after the short spark current pulses, but the NOx production rate of ~7 × 1016 molecules/J was achieved. The NO2/NO ratio decreased with increasing TS repetition frequency, which is related to the complex frequency-dependent discharge properties and thus changing NO2/NO generating mechanisms. Further optimization of NO2 and NO production to improve the biomedical and antimicrobial effects is possible by modifying the electric circuit generating the TS discharge.  相似文献   

9.
Rhodium—alumina-mixed oxides have been investigated as catalysts for selective catalytic reduction of NO x by propene, as a part of the R&D Project of Next Generation Catalysts Research Institute. The results indicated that the NO x reduction activity increases with a decrease in the reducibility of rhodium, suppressing wasteful consumption of propene by the reaction with oxygen. Coprecipitation method for the preparation of Rh-alumina catalysts was effective for the formation of the less-reducible rhodium sites, and the addition of zirconium and gallium further enhanced the formation of those sites and increased the selectivity of NO x reduction.  相似文献   

10.
Metal oxides are stable and highly durable catalysts for the selective catalytic reduction (SCR) of NO by hydrocarbons and potential candidates for practical use. This review focuses on the development as well as the fundamental understanding of metal oxide based catalysts for selective reduction of NO by hydrocarbons. Our studies on the SCR-deNOx properties of Ga2O3/Al2O3, Cu-Al2O3, and Ag-Al2O3 catalysts are presented and it is attempted to demonstrate the advantages of this type of catalysts. On the basis of several spectroscopic characterizations, the effect of important factors, such as dispersion, coordination, and the electronic states of the metal cation, on the intrinsic catalytic activity are quite well clarified. From the in situ FTIR results, the reaction mechanism is understood in terms of formation and reaction of surface molecules. The structural and kinetic information obtained at the molecular level provides a useful strategy for designing better deNOx catalysts using metal oxides.  相似文献   

11.
It has been demonstrated by quantitative spectrokinetic measurements that, on the surface of zirconia stabilized as a tetragonal phase, the rate-limiting step of the selective catalytic reduction of nitrogen oxides (SCR of NO x ) with propylene is the interaction of surface nitrates with C3H6 yielding organic nitro compounds. It is hypothesized that propylene reacts not with the nitrates themselves but with the activated complex NO2 ads whose structure is intermediate between the structures of the monodentate NO3 ? and NO2 species. Deep C3H6 oxidation exerts an adverse effect on the rate of the SCR of NO x with propylene, and the interaction between O2 and NO, which yields NO2 and NO3 ? stimulates further nitrogen reduction to N2. The effect of the reaction between oxygen and O2N?C n H m on the NO x reduction rate is variable and is determined by the C3H6/NO x ratio. A generalized scheme of the SCR of NO x with propylene on the surface of ZrO2 partially stabilized as a tetragonal phase has been developed by comparing experimental data of this study and data available from the literature.  相似文献   

12.
The influence of SO2 exposure under lean (oxidizing) and rich (reducing) reaction conditions on the storage and oxidation/reduction function of a commercial NOx storage-reduction catalyst was investigated by temperature-programmed uptake experiments and high temperature XRD. Both the storage capacity and the oxidation/reduction function of the catalyst were deactivated by SO2 exposure under lean and rich reaction conditions. The deactivation of the storage component, i.e. the loss of the NOx storage capacity, resulted mainly from the formation of Ba-sulfates accumulating in the bulk phase, which have a high thermal stability (>800°C) and, therefore, cannot be removed under the typical operation conditions of a NSR catalyst. For the oxidation function only a temporarily deactivation during lean reaction conditions was observed. Besides the formation of SO2- 4 species on the storage component at the beginning of the SO2 exposure under rich conditions, an adsorption of SO2 on the noble metal component was observed resulting in the formation of sulfur deposits. The oxidation of these sulfur species with a subsequent spillover of SO2- 4 species to the storage component during lean conditions could accelerate the deactivation of the storage capacity.  相似文献   

13.
Ag/Al2O3 is a promising catalyst for the selective catalytic reduction (SCR) by hydrocarbons (HC) of NO x in both laboratory and diesel engine bench tests. New developments of the HC-SCR of NO x over a Ag/Al2O3 catalyst are reviewed, including the efficiencies and sulfur tolerances of different Ag/Al2O3-reductant systems for the SCR of NO x ; the low-temperature activity improvement of H2-assisted HC-SCR of NO x over Ag/Al2O3; and the application of a Ag/Al2O3-ethanol SCR system with a heavy-duty diesel engine. The discussions are focused on the reaction mechanisms of different Ag/Al2O3-reductant systems and H2-assisted HC-SCR of NO x over Ag/Al2O3. A SO2-resistant surface structure in situ synthesized on Ag/Al2O3 by using ethanol as a reductant is proposed based on the study of the sulfate formation. These results provide new insight into the design of a high-efficiency NO x reduction system. The diesel engine bench test results showed that a Ag/Al2O3-ethanol system is promising for catalytic cleaning of NO x in diesel exhaust.  相似文献   

14.
富氧条件下 Mn/ZSM-5 选择催化 CH4 还原 NO   总被引:3,自引:0,他引:3  
 考察了富氧条件下 Mn/ZSM-5 催化剂上 CH4 选择催化还原 NO 反应, 并采用 H2程序升温还原、SO2程序升温表面反应和 NO程序升温脱附等手段对催化剂进行了表征. 结果表明, 催化剂活性与制备方法和 Mn 负载量密切相关. 离子交换法制备的 Mn/ZSM-5 催化剂活性明显优于浸渍法制备的催化剂; NO 转化率随着 Mn 负载量的增加而增加, 至 2.06% 时达到最大值 (57.3%), 然后随着 Mn 负载量的增加而降低. 采用离子交换法或较低 Mn 负载量 (≤ 2.06%) 抑制了催化剂中非化学计量的 MnOx (1.5 < x < 2) 物种的形成, 减缓了 CH4 的氧化燃烧反应, 因而 CH4 还原 NO 的选择性提高. 在含 SO2 体系中, Mn/ZSM-5 活性在 550 oC 以下时明显下降, 但在 600 oC 以上基本不受影响. 这是由于在 550 oC 以下时 SO2 在 Mn/ZSM-5 表面形成了稳定的吸附硫物种, 覆盖了部分活性位, 导致催化剂活性降低; 而在 600 oC 以上时含硫物种基本脱附完全, 因而对催化剂活性影响不大.  相似文献   

15.
Thin films of hollandite-type K1.9Ga1.9Sn6.1O16 (KGSO) were prepared by a spin-coating method. The films were colorless and transparent, 100-150 nm thick, and consisted of KGSO fine particles of about 20 nm in average size. The adsorption behavior of NO on the KGSO surface was examined by diffuse reflectance infrared fourier transform (DRIFTS). The KGSO was preheated at 968 K in a gas mixture of N2 and O2 prior to NO adsorption. As the oxygen ratio in the gas mixture increased up to 40%, absorption bands emerged and became stronger around 1400 cm-1. Those bands were assigned to NO2 species in chelating and nitrito form. It was found that the coexistence of oxygen remarkably improves the adsorption ability of NO on KGSO surface.  相似文献   

16.
The electric conductivity‐dependence of the number of electrons transferred during the oxygen reduction reaction is presented. Intensive properties, such as the number of electrons transferred, are difficult to be considered conductivity‐dependent. Four different perovskite oxide catalysts of different conductivities were investigated with varying carbon contents. More conductive environments surrounding active sites, achieved by more conductive catalysts (providing internal electric pathways) or higher carbon content (providing external electric pathways), resulted in higher number of electrons transferred toward more complete 4e reduction of oxygen, and also changed the rate‐determining steps from two‐step 2e process to a single‐step 1e process. Experimental evidence of the conductivity dependency was described by a microscopic ohmic polarization model based on effective potential localized nearby the active sites.  相似文献   

17.
A series of MoO3 doped Fe2O3 catalysts prepared by the co-precipitation method were investigated in the selective catalytic reduction of NO by NH3 (NH3-SCR). The catalysts displayed excellent catalytic activity from 225 to 400°C and high tolerance to SO2/H2O poisoning at 300°C. To characterize the catalysts the N2-BET, XRD, Raman, NO-TPD, NH3-TPD and in situ DRIFTS were carried out. It was found that the main reason explaining a high NH3-SCR performance might be the synergistic effect between Fe and Mo species in the catalyst that could enhance the dispersion of Fe2O3 and increase NH3 adsorption on the catalyst surface.  相似文献   

18.
Plasma Assisted Catalytic Reduction (PACR) of NO x has been investigated at laboratory scale for gas stream compositions representative of marine diesel exhausts. PACR NO x reduction in excess of 90% was measured at 350°C, a plasma specific energy of 60 J/l and two NO x concentrations (1,200 and 1,800 ppm). PACR NO x reduction of over 50% was measured for simulated marine engine conditions at 250°C, 60 J/l and 1,200 ppm NO x . The performance under these conditions could be increased, achieving a peak of ∼74% NO x reduction, although at a relatively high plasma power. Water, present in diesel exhaust, was shown to inhibit the poisoning effects of fuel sulphur using SO2 as a representative exhaust component. The PACR system performance demonstrated tolerance to simulated fuel sulphur levels of up to 1% for the duration of the tests. PACR performance was also shown to be sensitive to the amount of hydrocarbon reductant used.  相似文献   

19.
富氧条件下贵金属催化剂上丙烯选择性还原NO研究   总被引:8,自引:0,他引:8  
用溶胶-凝胶(Sol-gel)法制备了以γ-Al2O3为载体,以Pt,Pd和Rh等为活性组分的单组分及双组分催化剂,在稀燃汽油机条件下评价了丙烯对NO的选择性催化还原活性.结果表明,在单组分催化剂中,催化剂的活性及顺序为Rh(73%)>Pt(65%)>Pd(47%),最高活性对应的温度分别为Pt(225℃),Pd(275℃)和Rh(375℃),N2选择性顺序为Rh,Pd(>80%)>Pt(48%),氧化性顺序为Pt>Rh>Pd.Sol-gel制备的双组分催化剂中的不同贵金属活性位具有一定的协同效应,可明显拓宽活性温度范围,其中以Pt-Rh组合活性最好.Rh/Al2O3和Pt/Al2O3两种催化剂分层有序填装时,可提高C3H6的利用率,在200~450℃范围内,可有效地催化净化NO.  相似文献   

20.
The main features of the mechanism of selective reduction of nitrogen oxides by hydrocarbons (methane, propane, and propylene) in excess oxygen catalyzed by systems containing transition metal cations are considered. A combination of steady-state and non-steady-state kinetic studies, in situ Fourier-transform infrared (FTIR) spectroscopy, temperature-programmed desorption, and theoretical analysis of bond strengths and spectral data for adsorption complexes made it possible to determine reliably that surface nitrate complexes are key intermediates at real temperatures of catalysis. The rate-limiting step in these reactions includes the interaction of these complexes with hydrocarbons or their activated forms. Factors are considered that determine the structure, bond strength, and routes of nitrate complexes transformations under the action of hydrocarbons. Mechanistic schemes are proposed for the reaction of various types of hydrocarbons in which the determining role belongs to the formation of organic nitro compounds in a rate-limiting step. Their further fast transformation with the participation of surface acid sites resulting in the formation of ammonia, which is a highly efficient reducing agent, though not limiting the whole process, but determines nevertheless both the selectivity to the target product, molecular nitrogen, and the selectivity of hydrocarbon consumption for nitrogen oxide reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号