首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
3 for on-line absorption measurements of H2CO, CH4, and H2O near 3.5 μm is reported. Formaldehyde levels of 30 ppb, corresponding to absorptions of 2×10-4 have been measured using absorption spectroscopy. In this paper we report specifically the performance of this sensor as part of the 1997 Lunar–Mars Life Support Test program at the NASA Johnson Space Center. Received: 1 April 1998  相似文献   

2.
2 , and its sensitivity is 7(2)×10-8 in a 1-Hz bandwidth. The corresponding minimum detectable concentration of CO2 in air has been estimated to be 1 ppm · m. This opens the possibility of a detection at ppb levels at 2 μm, where a two orders of magnitude increase in the CO2 absorption signal is demonstrated. Received: 06 April 1998/Revised version: 02 July 1998  相似文献   

3.
A new technique of cavity enhanced absorption spectroscopy is described. Molecular absorption spectra are obtained by recording the transmission maxima of the successive TEMoo resonances of a high-finesse optical cavity when a Distributed Feedback Diode Laser is tuned across them. A noisy cavity output is usually observed in such a measurement since the resonances are spectrally narrower than the laser. We show that a folded (V-shaped) cavity can be used to obtain selective optical feedback from the intracavity field which builds up at resonance. This induces laser linewidth reduction and frequency locking. The linewidth narrowing eliminates the noisy cavity output, and allows measuring the maximum mode transmissions accurately. The frequency locking permits the laser to scan stepwise through the successive cavity modes. Frequency tuning is thus tightly optimized for cavity mode injection. Our setup for this technique of Optical-Feedback Cavity-Enhanced Absorption Spectroscopy (OF-CEAS) includes a 50 cm folded cavity with finesse ∼20 000 (ringdown time ∼20 μs) and allows recording spectra of up to 200 cavity modes (2 cm−1) using 100 ms laser scans. We obtain a noise equivalent absorption coefficient of ∼5×10−10 cm−1 for 1 s averaging over scans, with a dynamic range of four orders of magnitude.  相似文献   

4.
The development of a compact tunable mid-IR laser system at 3.5 μm for quantitative airborne spectroscopic trace gas absorption measurements is reported. The mid-IR laser system is based on difference frequency generation (DFG) in periodically poled LiNbO3 and utilizes optical fiber amplified near-IR diode and fiber lasers as pump sources operating at 1083 nm and 1562 nm, respectively. This paper describes the optical sensor architecture, performance characteristics of individual pump lasers and DFG, as well as its application to wavelength modulation spectroscopy employing an astigmatic Herriott multi-pass gas absorption cell. This compact system permits detection of formaldehyde with a minimal detectable concentration (1σ replicate precision) of 74 parts-per-trillion by volume (pptv) for 1 min of averaging time and was achieved using calibrated gas standards, zero air background and rapid dual-beam subtraction. This corresponds to a pathlength-normalized replicate fractional absorption sensitivity of 2.5×10-10 cm-1. Received: 29 April 2002 / Published online: 21 August 2002 RID="*" ID="*"Corresponding author. Fax: +1-303/497-1492, E-mail: dr@ucar.edu  相似文献   

5.
Tunable narrowband mid-infrared radiation from 3.25 to 4.4 μm is generated by a compact fiber-coupled, difference-frequency-based spectrosopic source. A 20-mW external cavity diode laser (with a tuning range from 814 to 870 nm) and a 50-mW distributed-Bragg-reflector diode-laser-seeded ytterbium-doped fiber amplifier operating at 1083 nm are difference-frequency mixed in a multi-grating, temperature-controlled periodically poled LiNbO3 crystal. A conversion efficiency of 0.44 mW/(W2 cm) (corresponding to a power of ≈3 μW at 3.3 μm) represents the highest conversion efficiency reported for a portable device. Performance characteristics of such a sensor and its application to spectroscopic detection of CO2, N2O, H2CO, HCl, NO2, and CH4 will be reported in this work. Received: 14 May / Revised version: 24 June 1999 / Published online: 30 September 1999  相似文献   

6.
A miniature high-coherent diode laser was developed. Optical feedback from a high-Q microsphere resonator was used to narrow the spectrum of the laser, and a nearly half-pitch gradient-index lens served as a coupling element. As estimated from the variation in frequency-tuning range (chirp-reduction factor) the fast line width of the laser was reduced by more than three orders. It is remarkable that the system reveals stable single-mode operation at a relatively high feedback level. A tentative explanation is presented in terms of previously given models. Received: 8 July 2002 / Revised version: 9 March 2003 / Published online: 24 April 2003 RID="*" ID="*"Corresponding author. Fax: +7-095/334-0249, E-mail: vvv@okb.lpi.troitsk.ru  相似文献   

7.
We demonstrate monitoring of H2O and CO2 emitted in a volcanic area, using a spectrometer equipped with two distributed feedback (DFB) semiconductor diode lasers. Each laser is resonant with a molecular species and is fiber-coupled to allow remote operation of the spectrometer. Recordings of H2O and CO2 lines made at the Solfatara volcano, in southern Italy, are shown, and the application of such a spectrometer as a new tool for the continuous monitoring and surveillance of volcanoes is discussed. Received: 28 June 1999 / Revised version: 20 December 1999 / Published online: 23 February 2000  相似文献   

8.
Using excitation pulses of ∼30-ps duration and a fast photomultiplier detector, effective fluorescence lifetimes of the A-stateof formaldehyde after excitation at 355 and 339 nm have been measured in the preheating zone of an atmospheric pressure, premixed methane/air flame. The fluorescence lifetimes were determined as a function of height above the exit of a slot burner and were thus probed in regions of varying gas temperature and composition. The fluorescence lifetimes were independent of the intensity of the excitation pulse and decreased as a function of height in the burner from ∼18±8 ns at 1.2 mm down to 7±1 ns at 3.8 mm. This trend of the effective fluorescence lifetime with composition and temperature in the flame can qualitatively be reproduced using calculated major species mole fractions and species-specific quenching cross sections for CH from the literature. Received: 13 June 2001 / Revised version: 27 September 2001 / Published online: 29 November 2001  相似文献   

9.
Cavity-enhanced absorption spectroscopy is explained in terms of the transmission function of a rapidly swept interferometer, and the integrated transmission is shown to be proportional to the cavity ringdown time. The technique is demonstrated on the b1Σg +-X3Σg -  (1,0) band in molecular oxygen at 687 nm using a tunable diode laser and a relative-ly high-Q optical cavity (finesse ≈4000). A detection limit of 3×10-8 cm-1 s1/2 is achieved for a 0.8 cm-1 scanning range. Received: 24 June 2002 / Revised version: 5 August 2002 / Published online: 15 November 2002 RID="*" ID="*"Corresponding author. Fax: +44-1865/275410, E-mail: peverall@physchem.ox.ac.uk  相似文献   

10.
11.
A compact multi-component trace-gas detector based on the resonant photoacoustic technique and a NIR external cavity diode laser has been developed. It has been characterized using a mixture of ethylene and methane diluted in ambient air. A spectroscopic investigation of combination bands and overtones between 5900 and 6250 cm-1, obtained with an IR pulsed laser photoacoustic spectrometer, allowed us to find a wavelength region where the 2ν3 overtone of CH4 and the ν59 combination band of C2H4 show uncongested rotational lines. Using a single-mode scan of the diode laser in this region, around 6150 cm-1, the sensitivity for the simultaneous detection of ethylene and methane is 8 ppm/mW and 40 ppm/mW respectively. Factors affecting the sensitivity and selectivity of the detection system and possible improvements suitable to reach the sub-ppm detection limit are discussed. Received: 1 August 2001 / Revised version: 28 November 2001 / Published online: 7 February 2002 An erratum to this article is available at .  相似文献   

12.
Results are given for thermal tuning and modulation of a 1556-nm distributed feedback fibre laser by resistive heating of a thin silver film chemically deposited on the fibre. Without reaching the limits of performance, linear tuning is demonstrated at a rate of 1.72 pm/mW up to about 200 pm, and a peak-to-peak modulation of 100 MHz up to modulation frequencies of 60 Hz. The heat flow is analyzed, and the coated fibre is characterized in terms of the static and dynamic wavelength response to the applied electric power. The performance of the scheme is tested by recording part of the ν13 combination band spectrum of 13C2H2 with thermal modulation and scanning of the fibre laser. Received: 12 March 2002 / Revised version: 24 June 2002 / Published online: 25 September 2002 RID="*" ID="*"Corresponding author. Fax: +45/4593-1137, E-mail: sus@dfm.dtu.dk  相似文献   

13.
We report the spectroscopic detection of formaldehyde in ambient air using cavity leak-out spectroscopy, a cw variant of cavity ring-down spectroscopy. This technique proved to be suitable for a real-time quantitative analysis of polluted air without any preprocessing of the air sample. Using a tunable CO-overtone sideband laser for the λ=3 μm spectral region and a ring-down cell with R=99.95% mirrors, we achieved a detection limit of 2 parts per billion formaldehyde in ambient air, corresponding to a minimum detectable absorption coefficient of 7×10-9/cm (sampling time: 2 s). Calibration problems arising from the polarity of the molecule and due to HITRAN database uncertainties are discussed. Received: 28 March 2002 / Revised version: 7 June 2002 / Published online: 21 August 2002 RID="*" ID="*"Corresponding author. Fax: +49-211/811-3121, E-mail: muertz@uni-duesseldorf.de  相似文献   

14.
A three-laser heterodyne system was used to measure the frequencies of twelve optically pumped laser emissions from 13CH3OH in the far-infrared (FIR) region. These emissions, ranging from 54 to 142 μm, are reported with fractional uncertainties up to ±2×10-7 along with their polarization relative to the CO2 pump. Using the 9P32 and 10R14 CO2 lines, complete spectroscopic assignments for two laser systems were confirmed. Received: 31 May 2001 / Published online: 19 September 2001  相似文献   

15.
We report on infrared laser spectroscopic measurements of the isotopic composition of methane (12CH4, 13CH4) in natural air samples with a cavity ring-down technique. A CO overtone sideband laser is utilized to excite a high-finesse cavity which provides an effective optical absorption path length of 3.6 km. We achieved a detection limit of 105 ppt methane in ambient air using an integration time of 20 s. This corresponds to a minimum detectable absorption of 1.9×10-9 /cm. Rapid determination of the 13C/12Cisotopic ratio of methane in ambient air without sample preconcentration or gas processing is realized. The present system requires only few minutes for an isotopic ratio measurement with a precision of 11%o . Received: 14 July 2000 / Revised version: 25 October 2000 / Published online: 6 December 2000  相似文献   

16.
A significantly improved far-infrared laser has been used to generate optically pumped laser emissions from 26 to 150 μm for CD3OH. Using an XV-pumping geometry, several new laser emissions have been found for CD3OH. In addition, an increase in power, by factors from 10 to 1000, for many of the previously known shorter-wavelength laser lines, below 100 μm, has been observed. Frequency measurements for several lines have also been performed and have been reported to a fractional uncertainty up to ±2×10-7, permitting the spectroscopic assignment of the laser transition. One of the frequency-measured lines, 44.256 μm observed using the 10R34 pump, has confirmed the assignment of the previously reported FIR emission (n,K;J)=(1,7;20)?(0,8;20)A in the ground vibrational state. Received: 26 October 2000 / Published online: 7 February 2001  相似文献   

17.
The partially deuterated isotopes of methanol, CH2DOH and CHD2OH, have been reinvestigated as sources of far-infrared (FIR) laser emissions using an optically pumped molecular laser (OPML) system recently designed for wavelengths below 150 μm. With this system, 10 new FIR laser emissions from these isotopes ranging from 32.8 to 174.6 μm have been discovered. This includes the shortest known OPML emission from CHD2OH, at 32.8 μm. These lines are reported with their operating pressure, polarizations relative to the CO2 pump laser and wavelengths, measured to ±0.5 μm. In addition, polarizations for three previously observed FIR laser lines from CHD2OH were measured for the first time. This paper is dedicated to the memory of Dr. K.M. Evenson, a pioneer in the field for his role in the development of optically pumped molecular lasers and their use in laser frequency measurements and the laser magnetic resonance technique. His scientific expertise, guidance, mentoring and friendship will be greatly missed. Received: 27 March 2002 / Published online: 8 May 2002  相似文献   

18.
19.
We have characterized a semiconductor amplifier laser system which provides up to 200 mW output after a single-mode optical fiber at 780 nm wavelength. The system is based on a tapered semiconductor gain element, which amplifies the output of a narrow-linewidth diode laser. Gain and saturation are discussed as a function of operating temperature and injection current. The spectral properties of the amplifier are investigated with a grating spectrometer. Amplified spontaneous emission (ASE) causes a spectral background with a width of 4 nm FWHM. The ASE background was suppressed to below our detection limit by a proper choice of operating current and temperature and by sending the light through a single-mode optical fiber. The final ASE spectral density was less than 0.1 nW/MHz, i.e. less than 0.2% of the optical power. Related to an optical transition linewidth of Γ/2π=6 MHz for rubidium, this gives a background suppression of better than -82 dB. An indication of the beam quality is provided by the fiber coupling efficiency of up to 59%. The application of the amplifier system as a laser source for atom-optical experiments is discussed. Received: 8 May 2000 / Revised version: 21 September 2000 / Published online: 7 February 2001  相似文献   

20.
Near-infrared trace-gas sensors based on room-temperature diode lasers   总被引:3,自引:0,他引:3  
2 monitor designed for field applications using room-temperature diode lasers are presented. Near-infrared DFB lasers operating at 1.57 μm and around 2.0 μm have been used for CO2 measurements. At ambient concentration levels a resolution of more than two orders of magnitude has been demonstrated at 1.57 μm, at 2 μm the precision is in the order of 0.1 ppm CO2, and for trace analysis a detection limit of 10 ppb has been obtained. The measurements demonstrate the capability of near-infrared DFB diode lasers for the precise determination of CO2 concentrations as required for climatological, medical, or industrial applications. Received: 24 February 1998/Revised version: 27 April 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号