首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The laser-induced surface deformation (LISD) technique was applied to generate high-frequency capillary waves on liquid surfaces up to several tens of kHz in a noncontact manner. The dynamic response of the fluid near the surface was theoretically derived under the condition of periodical radiation pressure. The result of the numerical calculation predicts the propagation of induced capillary waves out from the excitation region. The efficiency of the wave generation was experimentally examined by changing the width of the excitation laser beam at the surface. The observed LISD spectra were well reproduced by the theory, showing that the effective frequency band can be extended up to over 100 kHz. The propagation of the optically generated wave was measured with a laser probe sweeping the position of the observation. The spatial profile gives the surface tension and the shear viscosity of the sample liquid. The frequency domain measurement was also carried out and the spectrum obtained at a fixed point agrees with the theory, demonstrating the rapid measurement of frequency-dependent phenomena.  相似文献   

2.
Previously reported excitation spectra for eumelanin are sparse and inconsistent. Moreover, these studies have failed to account for probe beam attenuation and emission reabsorption within the samples, making them qualitative at best. We report for the first time quantitative excitation spectra for synthetic eumelanin, acquired for a range of solution concentrations and emission wavelengths. Our data indicate that probe beam attenuation and emission reabsorption significantly affect the spectra even in low-concentration eumelanin solutions and that previously published data do not reflect the true excitation profile. We apply a correction procedure (previously applied to emission spectra) to account for these effects. Application of this procedure reconstructs the expected relationship of signal intensity with concentration, and the normalized spectra show a similarity in form to the absorption profiles. These spectra reveal valuable information regarding the photophysics and photochemistry of eumelanin. Most notably, an excitation peak at 365 nm (3.40 eV), whose position is independent of emission wavelength, is possibly attributable to a 5,6-dihydroxyindole-2-carboxylic acid (DHICA) component singly linked to a polymeric structure.  相似文献   

3.
《Chemical physics letters》1987,137(4):391-397
Electron spin-echo envelope modulations of DPPH in glassy and polycrystalline solids at 100 K have been measured at 4.6 and 9.1 GHz electron spin excitation frequencies. 14N hyperfine and quadrupole coupling parameters have been evaluated through comparison of the experimental data waveforms and the corresponding spectra with simulated modulation patterns and associated frequency histograms. Because of the strong excitation frequency dependence of ESEEM, agreement between the observed and the simulated results at octave-separated excitation frequencies leads to a significant improvement in the accuracy of the derived couplings.  相似文献   

4.
Low-energy (0–5 V above threshold) electron-impact excitation spectra and a transmission spectrum are presented for acetylene. It is found that excitation via temporary negative ions plays a dominant role. Assignments are suggested for the observed electronic excitation processes.  相似文献   

5.
Off-resonance excitation coupled with mass-selective axial ejection of ions in a linear ion trap is shown to allow coherent control of a trapped ion population. Oscillations of the detected ion current have been found to correspond to the degree of detuning of the excitation field from the resonance frequency. Under appropriate excitation conditions coherent oscillations at the excitation frequency are seen that evolve into the ions’ secular frequency on termination of the excitation field. Termination of the excitation field at various points during the off-resonance excitation profile leaves the ions with different degrees of radial excitation. The degree of radial excitation can be controlled by the coherent excitation field and is demonstrated to be useful for collision-induced dissociation.  相似文献   

6.
Wavelength-scanned surface-enhanced Raman excitation spectroscopy   总被引:1,自引:0,他引:1  
A detailed wavelength-scanned surface-enhanced Raman excitation spectroscopy (WS SERES) study of benzenethiol adsorbed on Ag nanoparticle arrays, fabricated by nanosphere lithography (NSL), is presented. These NSL-derived Ag nanoparticle array surfaces are both structurally well-characterized and extremely uniform in size. The WS SERES spectra are correlated, both spatially and spectrally, with the corresponding localized surface plasmon resonance (LSPR) spectra of the nanoparticle arrays. The surface-enhanced Raman scattering (SERS) spectra were measured in two excitation wavelength ranges: (1) 425-505 nm, and (2) 610-800 nm, as well as with the 532-nm line from a solid-state diode-pumped laser. The WS SERES spectra have line shapes similar to those of the LSPR spectra. The maximum SERS enhancement factor is shown to occur for excitation wavelengths that are blue-shifted with respect to the LSPR lambda(max) of adsorbate-covered nanoparticle arrays. Three vibrational modes of benzenethiol (1575, 1081, and 1009 cm(-1)) are studied simultaneously on one substrate, and it is demonstrated that the smaller Raman shifted peak shows a maximum enhancement closer to the LSPR lambda(max) than that of a larger Raman shifted peak. This is in agreement with the predictions of the electromagnetic (EM) enhancement mechanism of SERS. Enhancement factors of up to approximately 10(8) are achieved, which is also in good agreement with our previous SERES studies.  相似文献   

7.
Threshold electron energy loss spectra for acetylene are presented and assignments suggested for the excitation processes occuring.  相似文献   

8.
Fluorescence spectra are presented, originating from upper excited singlet states in three xanthene dyes. The experimental method, using biphotonic pulsed laser excitation, is shown to have advantages over single-photon ultraviolet irradiation. It is further shown that the observed spectra depend on the nature and timing of the excitation frequencies.  相似文献   

9.
Vibrational fluorescence induced by IR multiple-photon excitation of hexafluorocyclobutene was measured as a function of laser frequencies. The width and shift of the inhomogeneous broadened fluorescence bands represent the excitation energy. The contrasting shapes of the excitation and previously measured chemical yield spectra are explained by the Poisson distribution of the molecules in the quasicontinuum.  相似文献   

10.
A quantitative and comprehensive knowledge of leaf fluorescence is required for the interpretation of fluorescence signals at the canopy level and also for the modelling of leaf and canopy fluorescence. In this work we present full range fluorescence excitation and emission spectra of intact leaves, expressed in units of apparent spectral fluorescence yield, from both the adaxial and the abaxial sides of the leaves, and for both front-side and back-side geometries. Emission spectra were measured for incident radiations in the blue and the green spectral range. The red/far-red fluorescence ratio depended on the measurement geometry and on the excitation wavelength. Excitation spectra were measured for emissions at 687 and 760 nm. When the abaxial side was illuminated, the measured spectra always had a larger intensity compared to adaxial side that is explained by the higher scattering of the spongy tissues. At 760 nm, the spectra had the same shape for front-side and back-side geometry, indicating that scattering predominated. At 687 nm, the shape of the spectra was very different for front-side and back-side geometry due to re-absorption of red fluorescence within the leaf. The comparison of excitation spectra measured from the adaxial or the abaxial side revealed differences in carotenoid absorption.  相似文献   

11.
The C 1s, Si 2p, Si 2s, and O 1s inner-shell excitation spectra of vinyltriethoxysilane, trimethylethoxysilane, and vinyltriacetoxysilane have been recorded by electron energy loss spectroscopy under scattering conditions dominated by electric dipole transitions. The spectra are converted to absolute optical oscillator strength scales and interpreted with the aid of ab initio calculations of the inner-shell excitation spectra of model compounds. Electron energy loss spectra recorded in a transmission electron microscope on partly cured adhesion promoter, atomic force micrographs, and images and X-ray absorption spectra from X-ray photoemission electron microscopy of as-spun and cured vinyltriacetoxysilane-based adhesion promoter films on silicon are presented. The use of these measurements in assisting chemistry studies of adhesion promoters for electronics applications is discussed.  相似文献   

12.
Fragmentation of the pentapeptide leucine enkephalin (YGGFL) is accomplished via higher-order resonances combined with simultaneous analysis of low-mass product ions. Two methods of achieving excitation are explored: (1) 0.5 ms resonant excitation at the omega and at Omega-omega secular frequencies of ion motion (where Omega is the radio-frequency (rf) drive frequency) in a manner similar to both pulsed q collision-induced dissociation (PQD) and high amplitude short time excitation (HASTE), and (2) 0.5 ms pulse of the omega or at Omega-omega excitation frequencies when the secular frequency of the ions is quickly swept across resonance conditions (pulsed q dynamic CID, PqDCID). In both methods of excitation, the rf amplitude on the ring electrode is rapidly decreased after excitation, therefore enabling analysis of low-mass product ions. Maximum fragmentation efficiencies of approximately 20% can be obtained with pulsed CID with both regular and high-order frequency excitation, while pulsed DCID offers maximum efficiencies of approximately 12%. All the excitation methods studied offer increased internal energy depositions when compared to conventional CID, as measured by the a4/b4 product ion ratios of leucine enkephalin. These ratios were as high as 13:1 for pulsed CID and 8:1 for PqDCID. Successful mass analysis of the low-mass ions is observed with both pulsed CID and PqDCID. The combined benefit of high internal energy deposition and wider dynamic mass range offers the possibility of increased sequence coverage and the identification of unique internal fragments or high-energy product ions which may provide complementary information to biological applications of conventional CID. This is the first report on deliberate fragmentation of precursor ions at a higher-order component of the ion secular frequency combined with a successful mass analysis of the low-mass ions through pulsed CID and PqDCID.  相似文献   

13.
An exploration of the parameters necessary to obtain high‐resolution excitation, using dipolar excitation, of an ion in a linear ion trap has been undertaken in this study. These parameters included ion trap pressure, excitation amplitude, excitation period, drive frequency of the ion trap, Mathieu q value and the mass of the ion of interest. An understanding of how these parameters play a role in high‐resolution excitation is necessary to the development of a method for the targeted tandem mass spectrometric (MS/MS) analysis of ions with the same nominal mass. Resonance excitation profiles with full width half maxima as narrow as 0.015 m/z units could be obtained, under the right conditions, for an ion from a homogenously substituted triazatriphosphorine at m/z 322.049, which translates into a mass resolution of >21 500. In this particular case the requirement for high resolution was a low trap pressure (3.8 × 10?5 Torr), low excitation amplitude (3 mV), long excitation period (100 ms) and a high Mathieu q value(0.8) when using a drive frequency of 1.228 MHz. Similar conditions were used to demonstrate the isolation of individual [M + H]+ component ions from mixtures of bromazepam (m/z 316.008)/chlorprothixene (m/z 316.0921)/fendiline (m/z 316.206) and chlorprothixene (m/z 316.0921)/oxycodone (m/z 316.1543)/fendiline (m/z 316.206) prior to obtaining product ion spectra with excitation at q = 0.236. In the former mixture the individual components were isolated with near 100% efficiency while in the latter mixture the isolation efficiency dropped to near 50% for the oxycodone component and to 80% for the other components. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Time-dependent excitation profiles are calculated for a model system with a continuum of oscillator strength-carrying states. A simple procedure is suggested for relating absorption spectra with excitation profiles at all times based on a previously developed “reduced model” method.  相似文献   

15.
Laser-induced fluorescence excitation spectra in the gas phase have been obtained for CCl2 and CFCI radicals. The observed spacings in the excitation spectra reported here agree well with previous absorption work in the matrix.  相似文献   

16.
The observation of triplet-triplet absorption and emission spectra of salicylidene-m-bromo-aniline in solution, is complicated by the possible colored isomer formation during the optical pumping for yotta-photonic excitation at room temperature. The short-lived (singlet-singlet) and long-lived (triplet-triplet) absorption spectra were recorded phographically by microsecond flash and nano-second laser flash photolysis techniques. Salicylidene-m-bromo-aniline complexes were purified by repeated recrystallization until further recrystallization produced no further changes for X-ray diffraction pattern and optical absorption, emission properties. For yotta-photon excitation system, light could be faster than usual, because of heat and to many photonic collisions in the cavity, slowed down by the molecule, and stopped or frozen in a molecular orbital for a short time from nano-second to atto-second. The physical properties of the absorbed photons, in a very high photon flux density (i.e. in a photon field) are different in photonic character, and the emitted photons by the excited states behaves differently in photon field, no splitting occurs for the absorbed or emitted lines like in electrical or magnetic fields.  相似文献   

17.
Threshold electron-impact excitation spectra, transmission spectra and n→n* excitation functions are presented for formaldehyde, acetaldehyde and acetone. Formation of temporary negative ion states and their decay-channels are discussed. The electronic transition near 4 eV is shown to be due both to triplet and singlet n→n* excitation. The energy positions of the 3n→n* and first triplet Rydberg transition are accurately located. In formaldehyde a new transition is reported at 8.50 eV. Assignments are given for the observed electronic excitation processes.  相似文献   

18.
Luminescence emission and excitation spectra have been obtained for DNA films at 77 K under vacuum ultraviolet excitation (150–280 nm). The emission spectra, which cover the wavelength range 310 to 490 nm, consists of two components, a short-lived component around 350 nm which is attributed to fluorescence and a longer-lived component around 410 nm believed to be phosphorescence. The excitation spectra, as functions of emission wavelength, are similar in profile with a fairly broad peak around 9240–260 nm) with a shoulder around 200 nm followed by a gradual but constant decrease into the vacuum ultraviolet region of the spectrum. No evidence of autoionization was seen in the region investigated.  相似文献   

19.
A method of two-quantum excitation of molecules at Doppler-broadened transitions in a standing-wave radiation field is considered. It is shown that it is possible to increase the excitation selectivity of molecules with overlapping absorption lines when using spectra of two-photon absorption. Estimations of two-quantum transition probabilities for molecular gases are given.  相似文献   

20.
Wu Z  Chen M  Li P  Zhu Q  Wang J 《The Analyst》2011,136(12):2552-2557
Dielectric-barrier discharge (DBD) in argon as a cold source is used for the excitation of gaseous inorganic small molecules at atmospheric pressure. By choosing ammonia as a model molecule, the excitation process and the characteristics of the emission spectra are investigated. The emission spectra are recorded by designing either an open-end or an enclosed DBD excitation/emission source. The enclosed excitation mode effectively eliminates the background emissions arising from the ambient air components, especially those from nitrogen. Two emission lines attributed to the excitation of ammonia, i.e., 326.2 and 336.5 nm, are clearly isolated from the background emission spectra of argon, providing the basis for quantitative analysis. A detection limit of 0.37 ppm is achieved within a linear range of 1.2-35 ppm by monitoring at 326.2 nm. In practice, gaseous samples containing ammonia collected in a public toilet are excited in an enclosed excitation source and the emission at 326.2 nm is monitored for quantitative analysis. An ammonia concentration of 2.4 ppm is derived in the original atmospheric sample, and a spiking recovery of 94.7% is achieved at a 10 ppm ammonia level. This study shows that DBD cold excitation in combination with optical emission spectrometry (OES) offers a promising approach for the detection of ammonia pollution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号