首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Na11[CuO4][SO4]3 was obtained from a redox reaction of CuO with Na2O2 in the presence of Na2O and Na2SO4 in sealed Ag containers under Ar atmosphere at 600°C. The crystal structure has been determined from X-ray single crystal data at 293 and 170 K (Pnma, Z=4). The lattice parameters have been refined from X-ray powder data at 293 K as well: a=1597.06(6) pm, b=703.26(3) pm, c=1481.95(6) pm. The structure contains isolated distorted square-planar [CuO4]5− anions and non-coordinating sulfate groups. Furthermore, we report calculations of the Madelung Part of the Lattice Energy (MAPLE) and some of the physical properties of Na11[CuO4][SO4]3.  相似文献   

2.
分别以LiMn_2O_4,NaTi_2(PO_4)_3为正负极,1 mol·L~(-1) Li_2SO_4和0.5 mol·L~(-1) Na_2SO_4的混合水溶液为电解液组装成一种水系混合离子全电池。分别将正负极材料在3种不同水相电解液(1 mol·L~(-1) Li_2SO_4、0.5 mol·L~(-1)Na_2SO_4以及1 mol·L~(-1) Li_2SO_4+0.5 mol·L~(-1)Na_2SO_4混合电解液)中进行循环伏安和恒流充放电测试,结果发现,LiMn_2O_4在上述电解液中仅有Li~+的脱出/嵌入而Na~+由于半径较大而不参与该过程,NaTi_2(PO_4)_3在3种电解液中Li+、Na+均参与嵌入/脱嵌过程,且Li~+和Na~+的嵌入/脱出峰电位相差不大,分别为-0.82和-0.64 V,-0.95和-0.75 V;全电池在265 mA·g~(-1)电流密度下平均放电电压为1.55 V,充放电比容量分别为100.1和74.9 m Ah·g~(-1)。  相似文献   

3.
Conductivity data of several Na2SO4(I) solid solutions with cation substitutions are presented. The substitution of sodium by bi- and trivalent atoms generates cation vacancy concentrations up to 30% in the structure of Na2SO4(I) thus creating high mobility of Na+. Electrochemical measurements showed that Na+ ion conductivity prevails and that the electronic partial conductivity is negligible. Complex impedance diagrams were used to determine the influence of the vacancy concentration on the ionic conductivity of Na2SO4(I) solid solutions. It was found that the conductivity is strongly correlated to the vacancy concentrations, whereas the size and the charge of the substituting ions show no effect within the accuracy of the measurements. The activation energy as function of the vacancy concentration exhibits a minimum of 0.7 eV at a vacancy concentration of 1%. The maximum of conductivity was found to be 1.5 × 10?2 Ω?1 cm?1 at 500°C with 7% vacancies.  相似文献   

4.
The crystal structure of Na7Mg4.5(P2O7)4 has been solved by direct methods from the three-dimensional X-ray data. The space group is P1. The crystal structure consists of Mg2+, Na+, and P2O4?7 ions. One magnesium atom at symmetry center (0,0,0) and two sodium atoms at ±(?0.0421, ?0.0596, 0.2230) display occupation factors 0.5 each. A short interatomic distance between these Na+ and Mg2+ ions (1.80 ± 0.01 Å) excludes the occupation of both sites in the same unit cell. The crystal structure of Na7Mg4.5(P2O7)4 consists of unit cells containing Na8Mg4(P2O7)4 or Na6Mg5(P2O7)4 with a statistical occurrence 1:1.Each Mg2+ ion is octahedrally coordinated by six O2? ions at distances 1.979 – 2.270 Å. The coordination polyhedra around the Na+ ions are ill-defined. The bond angles POP in the P2O4?7 groups are 126.6 and 133.6° (±0.3°). The final reliability factor R is 7.1%.  相似文献   

5.
A comprehensive thermodynamic model based on the electrolyte NRTL (eNRTL) activity coefficient equation is developed for the NaCl + H2O binary, the Na2SO4 + H2O binary and the NaCl + Na2SO4 + H2O ternary. The NRTL binary parameters for pairs H2O-(Na+, Cl) and H2O-(Na+, SO42−), and the aqueous phase infinite dilution heat capacity parameters for ions Cl and SO42− are regressed from fitting experimental data on mean ionic activity coefficient, heat capacity, liquid enthalpy and dissolution enthalpy for the NaCl + H2O binary and the Na2SO4 + H2O binary with electrolyte concentrations up to saturation and temperature up to 473.15 K. The Gibbs energy of formation, enthalpy of formation and heat capacity parameters for solids NaCl(s), NaCl·2H2O(s), Na2SO4(s) and Na2SO4·10H2O(s) are obtained by fitting experimental data on solubilities of NaCl and Na2SO4 in water. The NRTL binary parameters for the (Na+, Cl)-(Na+, SO42−) pair are regressed from fitting experimental data on dissolution enthalpies and solubilities for the NaCl + Na2SO4 + H2O ternary.  相似文献   

6.
Gaseous products evolved from (NH4)2SO4, NH4HSO4 and NH4NH2SO3 during successive heating and cooling cycles were flushed with inert gas into analyzer Dräger tubes hooked tightly to the terminal port of the DSC cell base. This simple procedure allowed the starting temperature of the decomposition to be determined and the amount of the individual gases in the mixture to be identified and even estimated. NH4NH2SO3 at 523 K in humid air produced HNH2SO3 initially and, on further cycling, (NH4)2SO4 and NH4HSO4 also appeared. The ΔHf values for NH4HSO4 were (kJ mole?1): in an airtight sample holder 12.67, in a dry argon atmosphere 11.93, and in a static air atmosphere 10.92. Endothermic peaks for (NH4)2SO4 and 498 and 411 K represented the incongruent melting point and the polymorphic transition of (NH4)2SO4·NH4HSO4. After the first heating in air to 530 K, (NH4)2SO4 and NH4HSO4 exhibited closely similar cyclic DSC curves. The endothermic peaks at about 393–420 K may be assigned to different combinations of (NH4)2SO4 and NH4HSO4.  相似文献   

7.
The effect of Na2SO4 and PhCOONa on the aquation of [Fe(Me4phen)3]2+ has been investigated in pure Triton X-100 as solvent. The rate and mechanism of the aquation are explained in terms of changes in the mobility, activity and structure of H2O in the restricted environment of water pockets in the Triton X-100 solvent.  相似文献   

8.
The new (Nb2W4O19),TMA2, Na4(OH2)14(SO4) has been evidenced as a minor phase during the Nb2W4O19TMA (tetramethylammonium) salt synthesis. Its crystal structure has been refined from single crystal X-ray diffraction data, system monoclinic, a=10.166(5) Å, b=17.93(1) Å, c=24.81(1) Å, β=93.057(7)°, space group (S.G.) C2/c, Z=4, R1=3.96%, wR1=4.50%. It shows the stacking of cationic and anionic bidimensional layers. The anionic layer of formula [(Nb2W4O19), TMA2 ]2− is formed of isolated Lindqvist HPAs surrounded by TMA groups. The isolated layers adopt a trigonal symmetry that is lost in the crystal by the association of the cationic sheets. These later, of formula [Na4(OH2)14(SO4)]2+ form porous net-like sheets with nearly circular cavities of diameter 7.5 Å. groups host the available cavities in a disordered manner. The cohesion between the sheets is performed by both electrostatic interactions and a set of hydrogen bonds. In the cationic layers, the highly symmetrical surrounding of HPAs by TMA groups yields a homogeneous electrostatic field at their external surface leading to a statistic Nb/W disorder over the three available independent metallic positions. Then, XAS experiments at the L1/L3-W edge complementarily helped to highlight the preferential cis configuration of (Nb2W4O19)4− anions, help to the strong Nb vs W contrast in their contribution to the backscattering paths. Previously to these experiments, it was of course checked that both the two phases present in the prepared sample contain Nb2W4O19 anions with nearly unchanged geometry.  相似文献   

9.
The crystal structure of K2SO4(SbF3)2 was determined by X-ray diffraction on a single crystal (R = 0.035 for 2264 reflections). There are two families of antimony atoms showing two different environments: AX5E octahedron (6 coordination) and AX6E 3.3.1 monocapped octahedron (7 coordination). The SO2?4 unit weakly bonded to four antimony atoms is not very distorted. This arrangement permits the minimization of π-E interactions. Infrared and Raman spectra are discussed in terms of diffraction results.  相似文献   

10.
The x, T-phase diagram of the binary system Na2WO4Na2MoO4 has been redetermined at ambient pressure, taking into account the influence of hysteresis effects. Thermodynamic calculations, based upon transition entropies as determined by precision DSC (differential scanning calorimetry), indicate that the system is almost ideal with respect to the high-temperature phases.As anion dopes, Na2SO4 and Na2CrO4 give a metastable extension of the β-phase of Na2WO4 at decreasing temperature, involving some 40°C at 0.01 mole fraction of dopant. Cation dopes like Li2WO4 and K2WO4 behave quite differently.The electrical conductivity through the phase diagram is high in the α-phase (σ ~ 10?2 mho cm?1) almost regardless of composition. The anomalous high conductivity of the β-phase decreases with increasing molybdate content. In pure Na2MoO4 an anomaly occurs at the α-α2 transition, resembling the behavior of Na2WO4 at the β-α transition. The (highest) α2-phase is hexagonal, (P63mmc, showing large anisotropic thermal vibrations. The α-phase is orthorhombic (Fddd) as is the β-phase (probably Pbn21).  相似文献   

11.
Thermogravimetry was used to obtain data on the isothermal rate of dehydration and hydration of the reaction Na2SO4·10H2O→Na2SO4+10H2O in the temperature range 10 to 25°C. The thermodynamic functions, ΔH, ΔG and ΔS were calculated and compared with data in the literature. The dissociation pressures of Na2SO4·10H2O at temperatures in the range 0 to 25°C were measured in a volumetric dissociation apparatus. The results obtained were compared with those using thermogravimetry and the accuracy of the two techniques was assessed.  相似文献   

12.
用共沉淀法和负载法制备了一系列SO  相似文献   

13.
采用高温熔盐法制备了NASICON型Na_4Fe V(PO_4)_3单晶。单晶X射线衍射数据分析表明,Na_4Fe V(PO_4)_3属于六方R3c空间群,单胞参数为a=b=0.878 17(4) nm,c=2.170 1(2) nm,Z=6,V=1.449 31(18) nm~3。该磷酸盐属于典型的NASICON结构,由PO_4四面体和Fe/VO_6八面体共顶点组成三维框架结构,提供多维的Na~+传输通道,2种不同类型Na~+位于框架的间隙。以Na_4Fe V(PO_4)_3/C粉末样品作为钠电池正极材料并以金属钠为对电极制备电池时,电化学测试结果表明其具有较高的容量。  相似文献   

14.
纳米复合固体超强酸SO42-/CoFe2O4的制备和表征   总被引:26,自引:0,他引:26  
采用纳米化学制备技术合成了新型的纳米复合固体超强酸催化剂SO4^2-/CoFe2O4。用XRD、TEM、XPS、红外光谱和比表面测定等技术研究了该催化剂的结构形态,结果表明:所研制的SO4^2-/CoFe2O42催化剂为晶态纳米粒子(〈50nm),比表面积很大(157m^2.g^-1),SO4^2-与氧化物的金属离子呈无机齿螯合状配位化合物的结合形式。以乙酸乙酯合成为模型反应考究了该催化剂的催化活  相似文献   

15.
A new compound, Na2Zn5(PO4)4, was identified in the system ZnONa2OP2O5 and high-quality crystal was obtained by the melt method. The crystal structure of this compound was solved by direct method from single crystal X-ray diffraction data. The structure was then refined anisotropically using a full-matrix least square refinement on F2 and the refinement converged to R1=0.0233 and wR2=0.0544. This compound crystallizes in the orthorhombic system with space group Pbcn, lattice parameters a=10.381(2) Å, b=8.507(1) Å, c=16.568(3) Å and Z=4. The structure is made up of 3D [Zn5P4O16]n2n covalent framework consisting of [Zn4P4O16]n4n layers. The powder diffraction pattern of Na9Zn21(PO4)17 is explained by simulating a theoretical pattern with NaZnPO4 and Na2Zn5(PO4)4 in the molar ratio of 1:4 and then by Rietveld refinement of experimental pattern. Na2Zn5(PO4)4 melts congruently at 855 °C and its conductivity is 5.63×10−9 S/cm.  相似文献   

16.
17.
A series of Na2SO4 doped CaCO3 catalysts were prepared. It was observed that the C2 yields and selectivities of Na2SO4/CaCO3 catalysts for OCM are intimately related to their conductivities. The effect of conductivity on the catalytic activity is discussed together with the conductivities and catalytic activities of the catalysts. The higher the conductivities, the higher the C2 yields and selectivities are.  相似文献   

18.
Phase diagrams of the systems K2SO4Sc2(SO4)3, Rb2SO 4Sc2(SO4)3 and Cs2SO4 Sc2(SO4)3 have been investigated by X-ray diffraction phase analysis and differential thermal analysis techniques. A salient feature of all the systems is the formation of M3Sc(SO4)3, which melt incongruently, and MSc(SO4)2, which on heating decompose in the solid state.  相似文献   

19.
采用溶胶-凝胶法合成了锂离子正极材料Li3V2(PO4)3/C(LVP/C)及Li2.5Na0.5V2(PO4)3/C,并用XRD、循环伏安及交流阻抗等方法,研究了大量Na+掺杂对材料结构和电化学性能影响。结果表明,大量钠离子的掺杂会使LVP结构由单斜向菱方转变。掺杂化合物Li2.5Na0.5V2(PO4)3/C在0.5 C充电1 C放电时,首次放电容量为118 mAh.g-1,50次循环后容量保持率为92.4%,并发现与单斜LVP存在多个放电平台不同,Li2.5Na0.5V2(PO4)3/C仅在3.7 V处有一个放电平台。  相似文献   

20.
The VO3?4 and Eu3+ luminescence in compounds with ordered β-K2SO4 structure is reported. The ratio of the Eu3+ and vandate emission intensity depends on the excitation energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号