首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Valence-band angle-resolved photoelectron spectra of oriented polycrystalline films of hexatriacontane (n-C36H74) were measured by He II (40.8 cV) light. Significant dependence of the spectra on photoemissive angle and light-incidence angle was observed. The advantages and problems of angle-resolved UV photoelectron spectroscopy to the study of electronic structures of organic crystals are discussed.  相似文献   

2.
The energy loss of 7Li+ ions scattered from NO has been measured in a molecular beam experiment over a range of scattering angles (θlab = 6.0–30.0°) at Ec.m. = 7 cV. The vibrational/rotational energy transfer behaves similar to the previously reported study on 7Li+CO, suggesting that in NO the degeneracy of the electronic ground state has little effect.  相似文献   

3.
Single crystals of Zr3Al3C5—a carbide previously reported with the formula ZrAlC2−x—were isolated from a sample prepared by reaction of ZrC with an excess of aluminum. The carbides ScAl3C3and UAl3C3were synthesized from the elemental components by arc-melting. The crystal structures of these three compounds were redetermined from four-circle X-ray diffractomter data. In the original structure determination of ZrAlC2−x, the metal positions were found to form close-packed layers in the space groupP63/mmc, while the carbon atoms were assumed to occupy 5/6 of the octahedral voids at random. The present structure determination in the space groupP63/mc(R=0.024 for 519 structure factors and 23 variable parameters) shows that all carbon positions are fully occupied and one has a trigonal bipyramidal aluminum coordination. The structures of ScAl3C3and UAl3C3also have originally been determined in the space groupP63/mmc. The present structure refinements in the space groupP63mc(ScAl3C3:R=0.031 for 282Fvalues and 16 variables; UAl3C3:R=0.029 for 217Fvalues and 16 variables) essentially confirms the structures with the exception of one aluminum site. In all of these structures the metal atoms are arranged in close-packed layers and together with the previously reported structure of U2Al3C4they form a homologous series with the general formulaT1+nAl3C3+n, wheren=0, 1, 2 for ScAl3C3, U2Al3C4, and Zr3Al3C5, respectively. The packing of the metal atoms is represented by the Zhdanov symbols (4)2, (5)2, and (6)2. The arrangement of the aluminum atoms is very similar to that of the binary carbide Al4C3, while the other metal atoms form a cubic stacking sequence, as it is found in the binary carbidesTC with NaCl type structure.  相似文献   

4.
CF3SiH3 (I) has been obtained in ~90 % yield from the reaction of CF3SiF3 or CF3SiF2I with LiAlH4 in dibutyl ether at ?78°. (I) has been characterized by its 1H, 19F, 13C and 29Si NMR-, mass-, IR- and Raman spectra. It is thermally stable up to 180° and not attacked by O2, H2O and H3PO4, but cleaved by aqueous alkali. From a rovibrational analysis, Bo = 0.09769(2) cm?1 is deduced, and a long SiC bond, 1.95(1)Å, is predicted.  相似文献   

5.
The intermetallic cerium compounds Ce3-Pd3Bi4, CePdBi, and CePd2Zn3 were synthesized from the elements in sealed tantalum ampoules in an induction furnace. The compounds were characterized by X-ray powder and single crystal diffraction: CeCo3B2 type (ordered version of CaCu5), P6/mmm, a = 538.4(4), c = 427.7(4) pm, wR2 = 0.0540, 115 F 2 values, 9 variables for CePd2Zn3 and Y3Au3Sb4 type, I [`4]{\bar 4} 3d, a = 1005.2(2) pm, w R2 = 0.0402, 264 F 2 values, 9 variables for Ce3Pd3Bi4, and MgAgAs type, a = 681.8(1) pm for CePdBi. The bismuthide structures are build up from three-dimensional networks of corner-sharing PdBi4 tetrahedra with Pd–Bi distances of 281 (Ce3Pd3Bi4) and 296 pm (CePdBi), respectively. The cerium atoms are located in larger voids of coordination number 12 (Ce3Pd3Bi4) and 10 (CePdBi). In CePd2Zn3 the cerium atoms fill larger channels within the three-dimensional [Pd2Zn3] network with 18 (6 Pd + 12 Zn) nearest neighbors. The three compounds contain stable trivalent cerium with experimental magnetic moments of μeff = 2.70(2), 2.48(1), and 2.49(1) μB/Ce atom for CePd2Zn3, Ce3Pd3Bi4, and CePdBi, respectively. Susceptibility and specific heat data gave no hint for magnetic ordering down to 2.1 K.  相似文献   

6.
The thermal decompositon of a number of organo-bielemental vanadium compounds with the general formula Cp2V(ER3) (ER3 - GeEt3, SnEt3, CH2SiMe3, SeGeEt3) has been investigated in solids and in solution. The main decomposition products of Cp2V(SnEt3) are vanadocene and hexaethyldistannane. Et3GeH, Et3GeCp, Cp2V and CpV(C5H4GeEt3) are formed from Cp2V (GeET3) decomposition. Isolated CpV(C5H4GeEt3) is characterized by IR and mass spectra. The decomposition of Cp2V(CH2SiMe3) is accompanied by Me4Si, Cp2V and CpV-(C5H4CH2SiMe3) formation, the latter is identified from the mass spectrum. Triethylgermane, vanadocene, and a diselenide of vanadium are isolated on decomposition of Cp2V(SeGeEt3). Based upon the experimental data, mechanisms for the decompositon are proposed.  相似文献   

7.
The compounds RbAuUSe3, CsAuUSe3, and RbAuUTe3 were synthesized at 1073 K from the reactions of U, Au, Q, and A2Q3 (A=Rb or Cs; Q=Se or Te). The compound CsAuUTe3 was synthesized at 1173 K from the reaction of U, Au, Te, and CsCl as a flux. These isostructural compounds crystallize in the KCuZrS3 structure type in space group Cmcm of the orthorhombic system. The structure consists of layers that contain nearly regular UQ6 octahedra and distorted AuQ4 tetrahedra. The infinite layers are separated by bicapped trigonal prismatic A cations. The magnetic behavior of RbAuUSe3 deviates significantly from Curie–Weiss behavior at low temperatures. For T>200 K, the values of the Curie constant C and the Weiss constant θp are 1.82(9) emu K mol−1 and −3.5(2)×102 K, respectively. The effective magnetic moment μeff is 3.81(9) μB. Formal oxidation states of A/Au/U/Q may be assigned as +1/+1/+4/−2, respectively.  相似文献   

8.
Transition metal trichalcogenides TaSe3, TaS3, NbSe3 and NbS3 were prepared under the reaction conditions of 2 GPa, 700°C, 30 min. NbSe3 is exactly the same as that obtained in the usual sealed-tube method. The other products are modifications of each usual phase. They have crystal structures very similar to that of NbSe3. The lattice parameters are a = 10.02Å, b = 3.48 Å, c = 15.56 Å, β = 109.6° for TaSe3, a = 9.52 Å, b = 3.35 Å, c = 14.92 Å, β = 110.0° for TaS3, and a = 9.68 Å, b = 3.37 Å, c = 14.83 Å, β = 109.9° for NbS3. In spite of the similarity in their crystal structures, these high-pressure phases show a variety of electrical transport properties. TaSe3 is a superconductor having Tc at 1.9 K. TaS3 is a semiconductor with two transitions at 200 and 250 K. NbS3 is a semiconductor with Ea = 180 MeV.  相似文献   

9.
The samples of YBa3B9O18, LuBa3(BO3)3, α-YBa3(BO3)3 and LuBO3 powders have been synthesized by the solid-state reaction methods at high temperature and their X-ray excited luminescent properties were investigated. All the studied materials show a broad emission band in the wavelength range of 300-550 nm with the peak centers at about 385 nm for YBa3B9O18 and LuBa3(BO3)3, 415 nm for α-YBa3(BO3)3 and 360 nm for LuBO3 powders, respectively. Even though those compounds have the different atomic structures, they have the common structural feature of each yttrium or lutetium ion bonded to six separate BO3 groups, i.e., octahedral RE(BO3)6 (RE=Lu or Y) moiety. This octahedral RE(BO3)6(RE=Lu or Y) moiety seems to be an important structural element for efficient X-ray excited luminescence of those compounds, as are the edge-sharing octahedral TaO6 chains for tantalate emission.  相似文献   

10.
A Bayard-Alpert (BA) gauge was used to determine apparent relative sensitivites Srel,X for O2, N2O, NO, NO2, NH3, CClF3 and CH3OH from gauge calibration measurements in the range 1.3×10–1 Pap1.3·10–3Pa. Nitrogen was used as a calibration standard.  相似文献   

11.
The crystal structures of the semiconductor Ti2O3 and the semimetal (Ti0.900V0.100)2O3 were determined from X-ray diffraction data collected from single crystals. The compounds are isostructural with Al2O3 of rhombohedral unit cell dimensions of a = 5.4325(8) Å and α = 56.75(1)° for Ti2O3, and a = 5.4692(8) Å and α = 55.63(1)° for the doped system. The effect of substitution of V+3 is to increase the metal-metal distance across the shared octahedral face from 2.579 Å in Ti2O3 to 2.658 Å in (Ti0.900V0.100)2O3, while decreasing the metal-metal distance across the shared octahedral edge from 2.997 to 2.968 Å. The metal-oxygen distances exhibit only small changes. These structural changes are consistent with the band theory proposed by Van Zandt, Honig, and Goodenough (9) to explain changes in electrical and other properties with increasing vanadium content in (Ti1?xVx)2O3.  相似文献   

12.
The IR and Raman spectra of solid and dissolved S4N4, S4N4H4, S4N4D4 and S3N3Cl3 have been recorded and are assigned according to D2d, C4v and C3v symmetry respectively. In the solid state, many forbidden bands and splittings of degenerate vibrations are observed because of the symmetry lowering in the crystals. Due to the different size and shape of the rings and to strong coupling of the normal modes there is no clear correlation between the SN ring stretching vibrations and the strength of the SN bonds, except for the one of the E modes. However, the stretching force constant show the trend expected from changes in interatomic distances.  相似文献   

13.
The standard free energy of formation of YbFe2O4, Yb2Fe3O7, YbFeO3, and Yb3Fe5O12 from metallic iron, Yb2O3, and oxygen was determined to be ?100.38, ?158.38, ?58.17, and ?283.40 kcal/mole, respectively, at 1200°C on the basis of the phase equilibria in the FeFe2O3Yb2O3 system. The FeFe2O3-Lanthanoid sesquioxide systems were classified into four types with respect to the assemblage of the ternary compounds in stable existence at 1200°C, and the standard free energy of formation of YbFeO3 was compared with those of the other lanthanoid-iron perovskites.  相似文献   

14.
Single crystals of new oxyborates, Mg5NbO3(BO3)3 and Mg5TaO3(BO3)3, were prepared at 1370 °C in air using B2O3 as a flux. They were colorless and transparent with block shapes. X-ray diffraction analysis of the single crystals revealed Mg5NbO3(BO3)3 and Mg5TaO3(BO3)3 to be isostructural. The X-ray diffraction reflections were indexed to the orthorhombic Pnma (No. 62) system with a=9.3682(3) Å, b=9.4344(2) Å, c=9.3379(3) Å and Z=4 for Mg5NbO3(BO3)3 and a=9.3702(3) Å, b=9.4415(3) Å, c=9.3301(2) Å and Z=4 for Mg5TaO3(BO3)3. The crystal structures of Mg5NbO3(BO3)3 and Mg5TaO3(BO3)3 are novel warwickite-type superstructures having ordered arrangements of Mg and Nb/Ta atoms. Polycrystals of Mg5NbO3(BO3)3 prepared by solid state reaction at 1200 °C in air showed broad blue-to-green emission with a peak wavelength of 470 nm under 270 nm ultraviolet excitation at room temperature.  相似文献   

15.
Perfluoroalkyl iodine compounds: preparations and properties of CF3IO, CF3IOF2, and CF3IO2. The trifluoromethyl iodine compounds CF3IO, CF3IOF2, and CF3IO2 are formed from the reactions of CF3I, CF3IF2 or CF3IF4 with ozone or silicon dioxide respectively. Their preparartions, properties, 19F-nmr spectra, and ir spectra are described.  相似文献   

16.
NaPd3O4, Na2PdO3 and K3Pd2O4 have been prepared by solid-state reaction of Na2O2 or KO2 and PdO in sealed silica tubes. Crystal structures of the synthesized phases were refined by the Rietveld method from X-ray powder diffraction data. NaPd3O4 (space group Pmn, a=5.64979(6) Å, Z=2) is isostructural to NaPt3O4. It consists of NaO8 cubes and PdO4 squares, corner linked into a three-dimensional framework where the planes of neighboring PdO4 squares are perpendicular to each other. Na2PdO3 (space group C2/c, a=5.3857(1) Å, b=9.3297(1) Å, c=10.8136(2) Å, β=99.437(2)°, Z=8) belongs to the Li2RuO3-structure type, being the layered variant of the NaCl structure, where the layers of octahedral interstices filled with Na+ and Pd4+ cations alternate with Na3 layers along the c-axis. Na2PdO3 exhibits a stacking disorder, detected by electron diffraction and Rietveld refinement. K3Pd2O4, prepared for the first time, crystallizes in the orthorhombic space group Cmcm (a=6.1751(6) Å, b=9.1772(12) Å, c=11.3402(12) Å, Z=4). Its structure is composed of planar PdO4 units connected via common edges to form parallel staggered PdO2 strips, where potassium atoms are located between them. Magnetic susceptibility measurements of K3Pd2O4 reveal a Curie-Weiss behavior in the temperature range above 80 K.  相似文献   

17.
Laser excitation of equilibrium vapor mixtures ErCl3(s)-ACl3(g) (A = Al, Ga, In) at 475–1100 K gives rise both to resonance fluorescence from the f → f Er3+ transitions of the Er-Cl-A vapor complexes, and to Raman scattering due to the vibrational modes of the ACl3 vapor. The laser-induced fluorescence from the 4F92, 4S32 and 2H112 states has been investigated at different temperatures and excitation.  相似文献   

18.
The phase equilibria in the FeFe2O3Y2O3 system have been established at 1200°C. The following phases were stable: yttria, hematite, magnetite, wüstite, metallic iron, yttrium-iron perovskite, yttrium-iron garnet, and a new phase YFe2O4, belonging to a rhombohedral crystal system. The YFe2O4 compound has a solid solution from YFe2O3.905 to YFe2O4.000. The standard free energies of formation of YFe2O3.905, YFeO3, and Y3Fe5O12 have been determined to be ?96 800 ± 200 cal, ?59 800 ± 200 cal, and ?143 700 ± 600 cal, respectively, from metallic iron, Y2O3, and oxygen.  相似文献   

19.
Conformational energy maps have been calculated, using the PCILO method, for X3PNP(O)X2 and (X3PNPX3)+ for X = H, F, Cl, CH3 as a function of the PNP angle. In H3PNP(O)H2 the global energy minimum corresponds to the eclipsed conformation of the H3P and P(O)H2 fragments for all PNP angles, while in Cl3PNP(O)Cl2, the global minimum always has Cl3P and P(O)C12 staggered: the global minimum in F3PNP(O)F2 corresponds to eclipsed F3P and P(O)F2 fragments at low PNP angles and staggered fragments at high PNP angles: in (CH3))3PNPO(CH3)2 the global minimum conformation is very sensitive to ∠ PNP. Subordinate energy minima occur for all X3PNP(O)X2, species: in particular, there are two local conformational minima for Cl3PNP(O)Cl2 at the optimum value of ∠ PNP, and the relative energies of the three stable conformations are in good agreement with those derivable from the 31P NMR spectrum of this compound. In (X3PNPX3)+ the global minimum, usually the sole minimum on the conformational energy surface, is always close to the eclipsed conformation: free rotation of the X3P groups relative to one another is approached in each (X3PNPX3)+ ion as ∠PNP approaches 180°. The conformations of the transition states for the equilibria between energy minima are reported with their relative energies, for X3PNP(O)X2 (X = H, F. Cl, CH3) and for (Cl3PNPCl3)+  相似文献   

20.
35Cl NQR spectra of dichlorophosphates Me(PO2Cl2)2 · 2D (Me = Mg, Ca, Mn; D = CH3COOC2H5, CH3COCH3, POCl3) are studied in the temperature range 77 ? T (K) ? 305. It is shown that the three compounds with CH3COOC2H5 as donor are isomorphic at 77 K, the crystal structure of Mn(PO2Cl2)2· 2CH3COOC2H5. The structure of Mg(PO2Cl2)2?· 2CH3COCH3 and of Mg(PO2Cl2)2 · 2POCl3 probably consists of infinite chains as found for Mn(PO2Cl2)2· 2CH3COOC2H5. Mg(PO2Cl2)2· 2CH3COOC2H5 shows phase transformations and a complicated dynamical behaviour leading to strong deviations from a Bayertype NQR function v = f(T). The donor capacity of POCl3 in Mg(PO2Cl2)2· 2POCl3 is comparable with the donor strength in AsCl3 · POCl3 · A dπ-pπ overlap of the P-O bond influences the P-Cl bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号