首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper is concerned with the effects of the plasma surface treatment and the addition of CNT on the mechanical properties of carbon fiber/polytetrafluoroethylene (PTFE) composite. The tensile and flexural strength of composites containing CNT and plasma‐treated carbon fibers improved. The flexural strength first decreases with respect to the CF content. The flexural strength increases to 179 MPa for the plasma‐treated composite as compared with 167 MPa for the neat carbon fiber composites. The overall improvement is thus nearly 8%.  相似文献   

2.
Polyamide-6 (PA6)/carbon fiber (CF) composites were prepared by melt-extrusion via continuous fiber fed during extruding. The mechanical, thermal properties, and crystallization behavior of PA6/CF composites were investigated. It was found that the tensile modulus and strength of the composites were increased with the addition of CF, while their elongations at break were decreased. Scanning electron microscopy observation on the fracture surfaces showed the fine dispersion of CF and strong interfacial adhesion between fibers and matrix. Dynamic mechanical analysis results showed that the storage modulus of PA6/CF composites was improved with the addition of CF. Non-isothermal crystallization analysis showed that the CF plays a role as nucleating agent in PA6 matrix, and the α-form crystalline structure was favorable in the PA6/CF composites, as confirmed from the X-ray diffraction analysis. A trans-crystallization layer around CF could be observed by polarizing optical microscopy, which proved the nucleation effect of carbon fiber surface on the crystallization of PA6. The thermal stability of PA6/CF composites was also enhanced.  相似文献   

3.
Mechanical properties of carbon fiber (CF) and carbon nanotube (CNT)‐filled thermoplastic high‐density polyethylene (HDPE) composites were studied with particular interest on the effects of filler content and fiber surface treatment by coupling agent. Surface‐treated CF‐filled HDPE composites increased their tensile strength and impact strength, which is further increased with the addition of CNT. SEM showed that CNT‐coating‐treated CF‐HDPE composites show better dispersion of the filler into the matrix, which results in better interfacial adhesion between the filler and the matrix. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
In this study, acrylonitrile‐butadiene‐styrene (ABS) terpolymer was reinforced with HNO3‐treated short carbon fibers (SCFs) [(hollow carbon fibers (HCFs)]. The effects of HCF concentration on the tensile properties of the composites were examined. Increasing the HCF concentration in the ABS matrix from 10 to 30 wt% resulted in improved tensile strength and tensile modulus. To obtain a strong interaction at the interface, polyamide 6 (PA6) at varying concentrations was introduced into the ABS/10 wt% SCF composite. The incorporation and increasing amount of PA6 in the composites increased tensile properties of the ABS/PA6/HCF systems due to the improved adhesion at the interface, which was confirmed by the ratio of tensile strength as an adhesion parameter. These results were also supported by scanning electron micrographs of the ABS/PA6/HCF composites, which exhibited an improved adhesion between the SCFs and the ABS/PA6 matrix. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Polyamide 66 (PA66) composites filled with clay and carbon fiber (CF) were prepared by twin‐screw extruder in order to study the influence of nanoparticle reinforcing effect on the mechanical behavior of the PA66 composites (CF/PA66). The mechanical property tests of the composites with and without clay were performed, and the fracture surface morphology was analyzed. The results show that the fracture surface area of the clay‐filled CF/PA66 composite was far smoother than that of the CF/PA66 composite, and there formed a tense interface on the CF surface after the addition of clay. The tensile and flexural strength of CF/PA66 composites with clay was improved. The impact strength decreased because of the high interfacial adhesion. In conclusion, the addition of clay favored the improvement of the higher interface strength and so had good effect on improving the tensile and flexural properties of the composites. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
The surface treatment of carbon fiber is carried out by electrophoretic deposition of p-aminobenzenesulfonamide grafted carbon nanotube (CNT), and it is used as a reinforcement of polyamide 6. The monofilament tensile test and XPS were used to study the effect of p-aminobenzenesulfonamide concentration on the tensile strength and surface functional groups of carbon fiber monofilaments. The results show that the higher the p-aminobenzenesulfonamide concentration, the greater the decrease in the mechanical properties of carbon fibers, and the greater the content of oxygen-containing functional groups on the surface. It is preferred that carbon fiber and thermoplastic polyamide 6 with higher retention rate of monofilament tensile strength and rich oxygen-containing functional group content are made into composite materials, and the interlaminar shear strength (ILSS) is evaluated.  相似文献   

7.
近些年来,碳纤维(CF)由于具有优异的力学性能,被用作复合材料的增强体.但CF表面缺少极性基团,呈现化学惰性,使CF与树脂(EP)之间的界面粘结性能较差.为了改善该问题,需要对CF表面进行改性.氧化石墨烯(GO)和碳纳米管(CNT)具有大的比表面积,且表面含有大量的极性基团,将二者引入CF表面,可以有效改善CF与EP之...  相似文献   

8.
The mechanical and morphological characteristics of PA6/ABS (60/40)-based hybrid composite containing HNO3-treated short carbon fibers (HSCF) and CaCO3 nanoparticles have been experimentally studied. A counter-rotating twin-screw extruder and an injection molding machine were employed to produce different samples containing 10 wt % of HSCF and 0, 2, 5 and 8 wt % of CaCO3 nanoparticles. The SEM observations indicated high-quality adhesion between HNO3-surface treated carbon fibers and PA6/ABS polymer matrix. In addition, the morphological studies showed that the inclusion of CaCO3 nanoparticles caused a significant effect on the ABS particle dispersion in PA6/ABS matrix. The mechanical properties assessments revealed that the incorporation of 10 wt % HSCF into the PA6/ABS can significantly improve tensile strength (82%), tensile modulus (107%), flexural strength (98%), flexural modulus (104%) and impact resistance (24%). The inclusion of CaCO3 nanoparticles, in the presence of 10 wt % HSCF, led to the noticeable improvements of tensile strength (128% for 2 wt % CaCO3), tensile modulus (199% for 5 wt % CaCO3), flexural strength (146% for 5 wt % CaCO3), flexural modulus (204% for 5 wt % CaCO3) and impact resistance (46% for 2 wt % CaCO3). The surface treatment of carbon fibers, dispersion conditions of nanoparticles and ABS phase in polymeric matrix were found to be the major important factors affecting the mechanical properties.  相似文献   

9.
The carbon fiber (CF) surface plays a critical role in the performance of CF composite materials. Adipic acid modified epoxy resin potassium (AAEK) prepared with epoxy resin and adipic acid, and KOH was employed as the CF sizing agent. Then, series of surface properties of AAEK‐treated carbon fiber (CF‐AAEK) including surface charge, morphology, and groups were characterized by using Faraday cup, friction coefficient gauge, atomic force microscopy, X‐ray photoelectron spectroscopy, and thermogravimetry. The results indicated that the dispersion coefficient of CF‐AAEK was increased by 1.72 times and there were synergistic effects for the dispersion of short CFs during the sizing treatment process with AAEK. In addition, the flexural strength of treated short CF composite proved to increase by 168%, which evaluated that the better CF dispersion in the matrix was a critical factor for the mechanical property improvement of short CF‐AAEK/epoxy resin composites.  相似文献   

10.
The oxidation-reduction and pre-irradiation induced methods were employed to study the effect of acrylic acid modification on the wetting and adsorption ability of carbon fiber (CF) in epoxy solution and the interfacial properties of CF/epoxy. Systematic experimental work was conducted to determine the surface topography, surface energy, surface chemical composition, absorbability and tensile strength of carbon fibers and interfacial adhesion of CF/epoxy before and after modification. The roughness, surface energy, amount of containing-oxygen functional groups and wetting ability were all found to increase significantly after modifications. The tensile strength of carbon fibers was improved marginally by γ-ray pre-irradiation while was decreased little by oxidation-reduction modification. Consequently, the surface modifications of carbon fibers via both oxidation-reduction and pre-irradiation led to an improvement (more than 15%) of the interlaminar shear strength of CF/epoxy composites. The mechanisms of interfacial improvement of modified CF/epoxy composites are proposed.  相似文献   

11.
采用响应面分析方法设计超临界正丁醇降解废弃的碳纤维/环氧树脂(CF/EP)复合材料降解实验,用以回收碳纤维.通过Design-Expert V8.0建立环氧树脂降解率和工艺参数之间的数学模型,获得了最优工艺参数;通过图形优化研究了工艺参数对环氧树脂基体降解率的影响规律;通过场发射电子扫描显微镜、原子力显微镜、X射线光电子能谱仪、显微共焦激光拉曼光谱仪及单丝拉伸等分析最优工艺参数下回收的碳纤维的表面形貌、表面化学、石墨化程度及力学性能.结果表明,建立的数学模型拟合误差范围为±5.5%,实现了回收工艺参数的预估;单因素对环氧树脂基体降解率的影响程度为:反应温度保温时间添加剂浓度正丁醇含量;最优工艺参数为:反应温度330℃,保温时间60 min,添加剂浓度0.0538 mol/L,投料比0.024g/mL.回收的碳纤维表面无残留树脂,没有发生明显的石墨化,且表面平均粗糙度与原碳纤维相近;与原始碳纤维相比,回收的碳纤维的拉伸强度约为原碳纤维的93.58%,杨氏模量约为原碳纤维的94.87%.  相似文献   

12.
采用等离子技术对碳纤维(CF)进行接枝芳基乙炔(PAA)处理,研究了影响CF/PAA复合材料层间剪切强度(ILSS)的因素。结果表明,经等离子接枝PAA处理后,复合材料的ILSS有了很大提高。SEM显示经接枝处理后CF和PAA树脂之间的界面结合紧密,改善了复合材料的界面结合性能。  相似文献   

13.
PA6 composites with various contents of wood fibers were prepared. The effects of fiber content and ionic liquid surface treatment on the tribological behavior of PA6 composite were studied under different nominal pressures ranging from 50 to 300 N. The tribological mechanisms were discussed based on scanning electron microscopy inspections of the worn surfaces. The surface treatment of wood fibers improves the tribological performance of the neat polymer matrix. The modification can improve O/C and N/C on the surface of wood fiber, while the increase of nitrogen and oxygen content on wood fiber surface can improve the surface polarity of wood fiber and improve the infiltration and bonding between wood fiber and PA6 resin.  相似文献   

14.
The effects of surface treatment of a carbon fiber (CF) by supersonic atmosphere plasma spraying (SAPS) on the interfacial adhesion behavior and morphology of polypropylene/polystyrene (PP/PS) matrix blends filled CF composites were investigated. Effects of surface treated a commercial CF on mechanical properties are studied. Contact angle was measured to examine the changes in wettability of the CF. The chemical and morphological changes were characterized by using X‐ray photoelectron spectroscopy and scanning electron microscopy. PP/PS/CF composites were fabricated with and without SAPS treatment, and their interlaminar fracture toughnesses were compared. The results showed that the interlaminar shear strength of composites has been greatly improved filled SAPS modification CF. The water contact angle of resin sample decreased 50% after addition of SAPS surface‐treated CF. Scanning electron microscopy results on the fractured surface exhibited PP/PS blends adhered well around the CFs of the SAPS‐treated specimen compared with that of the untreated specimen. This attributed to the CF interlock, and it improves the wetting between fibers and resins. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
The poor interfacial adhesion between carbon fibers (CFs) and polyimide (PI) resin has seriously hampered the application of CF/PI composites. In this work, the interfacial adhesion was efficiently enhanced by grafting on the CF surface. Surface morphology and surface composition of modified carbon fibers were characterized, which indicated that acrylamide was grafted successfully on the CF surface and the surface roughness was increased slightly. After grafting, the interface shear strength of modified carbon fibers/PI composites was significantly improved by 86.96%, and the interlaminar shear strength was enhanced by 55.61% due to the covalent bonds in interphase and the toughening effect of sizing agent. Moreover, the mechanical properties of composites with different interfacial adhesion were measured, which further confirmed the effect of the grafting modification.  相似文献   

16.
利用射频感性耦合冷等离子体(ICP)处理技术改性连续纤维表面,分别采用X射线光电子能谱(XPS)、原子力显微镜(AFM)及动态接触角分析(DCA)系统研究了等离子体处理时间、放电气压、放电功率等工艺参数对连续碳纤维、芳纶纤维和对亚苯基苯并二噁唑(PBO)纤维的表面化学成分、表面形貌、表面粗糙度及表面自由能的影响.研究结...  相似文献   

17.
利用静电相互作用在玻璃纤维(GF)表面分别复合纳米二氧化硅(SiO2)和多壁碳纳米管(MWNTs),制备了GF-SiO2、GF-MWNTs复合增强体,并通过转矩流变仪制备了尼龙6(PA6)/GF-SiO2和尼龙6(PA6)/GF-MWNTs复合材料.利用扫描电子显微镜(SEM),示差扫描量热仪(DSC),热机械分析仪(DMA)等手段研究了复合材料的微观结构、热学及力学性能.结果表明,静电复合的方法可以使纳米二氧化硅(nano-SiO2)、多壁碳纳米管(MWNTs)在GF表面达到均匀吸附,复合增强体能加快尼龙6的结晶速度,并使材料的玻璃化温度、动态模量、拉伸强度、结晶温度等明显提高,其中GF-MWNTs对复合材料性能的提高最明显,拉伸强度提升了21%,模量提高了28%.  相似文献   

18.
Summary: Carbon nanotubes (CNTs) have been grown on MCM‐41 supported Fe nanoparticles and the as‐prepared (no further purification) CNT‐silica hybrid was directly incorporated into nylon‐6 (PA6) by simple melt‐compounding. The urchin‐shaped CNT‐silica hybrid filler was observed to be homogeneously dispersed throughout the matrix by scanning electron and transmission electron microscopy. Compared with neat PA6, the tensile modulus and strength of the composite are greatly improved by about 110%, with incorporation of only 1 wt.‐% CNT‐silica filler.

SEM image and schematic representation showing polymer chains wrapping around the urchin‐shaped CNT‐silica hybrid filler.  相似文献   


19.
To prevent the loss of fiber strength, ultrahigh‐molecular‐weight polyethylene (UHMWPE) fibers were treated with an ultraviolet radiation technique combined with a corona‐discharge treatment. The physical and chemical changes in the fiber surface were examined with scanning electron microscopy and Fourier transform infrared/attenuated total reflectance. The gel contents of the fibers were measured by a standard device. The mechanical properties of the treated fibers and the interfacial adhesion properties of UHMWPE‐fiber‐reinforced vinyl ester resin composites were investigated with tensile testing. After 20 min or so of ultraviolet radiation based on 6‐kW corona treatment, the T‐peel strength of the treated UHMWPE‐fiber composite was one to two times greater than that of the as‐received UHMWPE‐fiber composite, whereas the tensile strength of the treated UHMWPE fibers was still up to 3.5 GPa. The integrated mechanical properties of the treated UHMWPE fibers were also optimum. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 463–472, 2004  相似文献   

20.
The effect of air oxidation and ozone surface treatment of carbon fibers (CF) on tribological properties of CF reinforced polytetrafluoroethylene (PTFE) composites under oil‐lubricated condition was investigated. Experimental results revealed that ozone treated CF reinforced PTFE (CF–PTFE) composite had the lowest friction coefficient and wear under various applied loads and sliding speeds compared with untreated and air‐oxidated composites. X‐ray photoelectron spectroscopy (XPS) study of carbon fiber surface showed that, after ozone treatment, oxygen concentration was obviously increased, and the amount of oxygen‐containing groups on CF surfaces was largely increased. The increase in the amount of oxygen‐containing groups enhanced interfacial adhesion between CF and PTFE matrix. With strong interfacial adhesion of the composite, stress could be effectively transmitted to carbon fibers; carbon fibers were strongly bonded with PTFE matrix and large scale rubbing‐off of PTFE was prevented, therefore, the tribological properties of the composite were improved. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号