首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为改善聚氯乙烯(PVC)和木纤维两者的界面亲合性,提高PVC/木纤维复合材料的机械力学性能,分别用硬脂酸和ABS来改性木纤维的表面,研究发现用硬脂酸处理木纤维可提高复合材料的拉伸强度,但对复合材料的冲击强度影响不大.ABS处理木纤维可同时提高复合材料的拉伸强度和冲击强度。本文也研究了改性剂用量和木纤维含量对复合材料力学性能的影响。  相似文献   

2.
Mechanical properties of carbon fiber (CF) and carbon nanotube (CNT)‐filled thermoplastic high‐density polyethylene (HDPE) composites were studied with particular interest on the effects of filler content and fiber surface treatment by coupling agent. Surface‐treated CF‐filled HDPE composites increased their tensile strength and impact strength, which is further increased with the addition of CNT. SEM showed that CNT‐coating‐treated CF‐HDPE composites show better dispersion of the filler into the matrix, which results in better interfacial adhesion between the filler and the matrix. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Wood fiber–reinforced ultrahigh molecular weight polyethylene (wood fiber/UHMWPE) composites have been filled with acid‐treated clay to enhance the adhesion. According to the modification, the interlaminar shear strength of composites has been greatly improved. X‐ray photoelectron spectroscopy and scanning electron microscopy are used to examine the microscopic properties of resultant composites. The enhanced interlaminar shear strength is attributed to the clay interlock, which improves the wetting between wood fibers and resins.  相似文献   

4.
《先进技术聚合物》2018,29(2):843-851
The mechanical properties of ultrahigh molecular weight polyethylene (UHMWPE) fibers reinforced rigid polyurethane (PU) composites were studied, and the effects of the fiber surface treatment and the mass fraction were discussed. Chromic acid was used to treat the UHMWPE fibers, and polyurethane composites were prepared with 0.1 to 0.6 wt% as‐received and treated UHMWPE fibers. Attenuated total reflection Fourier transform infrared demonstrated that oxygen‐containing functional groups were efficiently grafted to the fiber surface. The mechanical performance tests of the UHMWPE fibers/PU composites were conducted, and the results revealed that the treated UHMWPE fibers/PU composites had better tensile, compression, and bending properties than as‐received UHMWPE fibers/PU composites. Thermal gravimetric analyzer showed that the thermal stability of the treated fiber composites were improved. The interface bonding of PU composites were investigated by scanning electron microscopy and dynamic mechanical analysis, and the results indicated that the surface modification of UHMWPE fiber could improve the interaction between fiber and PU, which played a positive role in mechanical properties of composites.  相似文献   

5.
In this work, composite samples were prepared using Borassus fibers and a high-density polyethylene matrix. Alternatively, a chemically modified matrix (maleic anhydride grafted HDPE) was also used to improve fiber-matrix compatibility. The effect of fiber loading on the mechanical properties was investigated. Borassus fiber/modified HDPE composites exhibited improved mechanical performance as compared to pure HDPE composites. SEM studies on the fractured specimens of unmodified HDPE fiber composites reveal the poor fiber-matrix interaction, whereas the interaction is strong with enhanced mechanical properties for modified HDPE fiber composites. This is due to an improvement of the chemical bonding between the modified HDPE matrix and the Borassus fiber as also supported by Fourier transform infrared spectroscopy results. Thermal stability was also found to be enhanced slightly for modified HDPE composites.  相似文献   

6.
《先进技术聚合物》2018,29(2):982-988
Shape‐memory polymers are important smart materials with potential applications in smart textiles, medical devices, and sensors. We prepared trans‐1,4‐polyisoprene, low‐density polyethylene (LDPE), and high‐density polyethylene (HDPE) shape‐memory composites using a simple mechanical blend method. The mechanical, thermal, and shape‐memory properties of the composites were studied. Our results showed that the shape‐memory composites could memorize 3 temporary shapes, as revealed by the presence of broad melting transition peaks in the differential scanning calorimetry curves. In the trans‐1,4‐polyisoprene/LDPE/HDPE composites, the cross‐linked network and the crystallization of the LDPE and HDPE portions can serve as fixed domains, and all crystallizations can act as reversible domains. We proposed a schematic diagram to explain the vital role of the cross‐linked network and the crystallization in the shape‐memory process.  相似文献   

7.
The mechanical properties of ozonized high density polyethylene (HDPE) blended with sericite-tridymite-cristobalite (STC) were studied in this paper. The experimental results show that some oxygen containing polar groups are introduced on the molecular chain of HDPE through ozonization, the compatibility between HDPE and STC is thus improved, the mechanical properties of the blend are markedly enhanced. Compared with untreated HDPE/STC (60/40) blend, the yield strength and notched impact strength of ozonized HDPE/STC (60/40) blend are increased from 27.0MPa to 29.5MPa and from 2.8kJ/m^2 to 13.3kJ/m^2, respectively, the notched impact strength is close to that of HDPE (13.6kJ/m^2),the yield strength is in excess of 3.9MPa of that of HDPE. The yield strength and notched impact strength will be further increased to 30.7MPa and 32.4kJ/m^2 in case the ozonized HDPE is blended with STC pretreated with silane coupling agent.  相似文献   

8.
廖兵  黄玉惠 《应用化学》1996,13(5):64-66
接枝改性木纤维对聚氯乙烯/木纤维复合材料力学性能的影响廖兵,黄玉惠,赵树录,林果,丛广民(中国科学院广州化学研究所广州510650)关键词木纤维,聚氯乙烯/木纤维复合材料,接枝木纤维可作塑料的增强填料,但它与塑料的界面亲合性差,须进行改性,改善表面亲...  相似文献   

9.
Polyacrylamideacrylate (PAN)‐based carbon fibers were submitted to nitric acid oxidation treatments to improve the interfacial adhesion of the carbon fiber (CF)‐reinforced polyimide (CF/PI) composite. The carbon fiber surfaces were characterized by X‐ray photoelectron spectroscopy (XPS). Nitric acid oxidation not only affects the oxygen concentration but also produces an appreciable change in the nature of the chemical functions, namely the conversion of hydroxy‐type oxygen into carboxyl functions. Nitric acid oxidation treatment modifies the element constituting the fiber, the nitrogen concentration being about 1.2 times higher at the fiber external surface compared to the untreated one. The mechanical and tribological properties of the polymide (PI) composites reinforced by the carbon fibers treated with nitric acid oxidation were investigated. Results showed that the tensile strength of the CF/PI composites improved remarkably due to nitric acid treatment along with enhancement in friction and wear performance. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
In this study, acrylonitrile‐butadiene‐styrene (ABS) terpolymer was reinforced with HNO3‐treated short carbon fibers (SCFs) [(hollow carbon fibers (HCFs)]. The effects of HCF concentration on the tensile properties of the composites were examined. Increasing the HCF concentration in the ABS matrix from 10 to 30 wt% resulted in improved tensile strength and tensile modulus. To obtain a strong interaction at the interface, polyamide 6 (PA6) at varying concentrations was introduced into the ABS/10 wt% SCF composite. The incorporation and increasing amount of PA6 in the composites increased tensile properties of the ABS/PA6/HCF systems due to the improved adhesion at the interface, which was confirmed by the ratio of tensile strength as an adhesion parameter. These results were also supported by scanning electron micrographs of the ABS/PA6/HCF composites, which exhibited an improved adhesion between the SCFs and the ABS/PA6 matrix. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
傅强 《高分子科学》2009,(2):267-274
A new type of SiO_2-MgO-CaO (SMC) whisker was used to modify high density polyethylene (HDPE).The melting behavior and crystallinity were investigated by differential scanning calorimetry (DSC).The dispersion of whiskers and interfacial adhesion in the prepared HDPE/SMC whisker composites were investigated by scanning electron microscopy (SEM).The mechanical properties were evaluated by mechanical tests and dynamic mechanical analysis (DMA).DSC data indicated that the melting temperature and the crystall...  相似文献   

12.
This paper discloses a feasible and high efficient strategy for wood fiber treatment to introducing multi‐wall carbon nanotubes (MWCNTs) to the surface of wood fibers for the aim of improving the interfacial shear strength of wood fiber/epoxy composite. Briefly, a layer of MWCNT was deposited on wood fibers through sizing wood fibers with epoxy sizing agent containing amine‐treated MWCNTs (MWCNT‐PEI). The surface functional groups, morphology, wettability, and interphase properties of MWCNTs on the surface of wood fiber were studied. The remarkable enhancements were achieved in interfacial shear strength of reinforced composites by dipping wood fiber in MWCNTCOOH suspension and wood fiber sizing containing MWCNT‐PEI.  相似文献   

13.
The influence of the surface chemistry of the cellulose fiber and polymer matrix on the mechanical and thermal dynamic mechanical properties of cellulose‐fiber‐reinforced polymer composites was investigated. The cellulose fiber was treated either with a coupling agent or with a coupling‐agent treatment followed by the introduction of quaternary ammonium groups onto the fiber surface, whereas the polymer matrix, with opposite polar groups such as polystyrene incorporated with sulfonated polystyrene and poly(ethylene‐co‐methacrylic acid), was compounded with the fiber. The grafting of the fiber surface was investigated with Fourier transform infrared spectroscopy and X‐ray photoelectron spectroscopy. Experimental results showed that an obvious improvement in the mechanical strength could be achieved for composites with an ionic interface between the fiber and the polymer matrix because of the adhesion enhancement of the fiber and the matrix. The improved adhesion could be ascribed to the grafted ionic groups at the cellulose‐fiber surface. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2022–2032, 2003  相似文献   

14.
Ultraviolet irradiation, which is environment friendly and without any chemical pollution, was used to functionalize high‐density polyethylene (HDPE) and to improve the interfacial interaction of its composites with sericite in this study. The oxygen‐containing groups of C?O, C‐O, and C(?O)O were quickly introduced onto molecular chains of HDPE by ultraviolet irradiation in ozone atmosphere and the contents of the introduced oxygen‐containing groups increased with increasing the modification time. It is important to note that the irradiation time greatly decreased compared to that in air or oxygen atmosphere. After modification, the molecular weight of the irradiated HDPE decreased and its distribution became wider. The irradiated HDPE in ozone was not crosslinked, which is an advantage over the same reaction in air or oxygen atmosphere. With increasing the irradiation time, the melting temperature of the irradiated HDPE lightly decreased, while its crystallinity, hydrophilicity, and fluidity increased. The composites of HDPE/sericite were prepared. The results showed that the dispersion of sericite in the matrix and the interfacial interaction of sericite with the matrix were markedly improved for the irradiated HDPE/sericite composites. As a result, the irradiated HDPE/sericite composites showed significantly increased tensile yield strength and notched impact strength. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Ultra‐high‐molecular‐weight polyethylene (UHMWPE) fiber was treated to reinforce the polytetrafluoroethylene/polyoxymethylene (PTFE/POM), and the mechanical properties of surface‐treated UHMWPE were investigated. Scanning electron microscopy was utilized to study the fracture surfaces of UHMWPE/POM/PTFE composites. Experimental results showed that the surface treatment of UHMWPE fiber effectively improves the mechanical property of POM/PTFE composites. Scanning electron microscopy studies indicated that surface modification could improve the interfacial adhesion of POM/PTFE composites. And the dispersion of UHMWPE in POM/PTFE composites was also improved after the surface modification. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
The present work comparatively studied the modification effects of short carbon fiber (CF) on the mechanical properties and fretting wear behavior of ultra‐high molecular weight polyethylene (UHMWPE)/CF composites. The interactions between CFs and UHMWPE interface were also investigated in detail. The results showed that, with the increase in fiber content, the compressive modulus and hardness of the composites increased, while its impact strength decreased. It was found that filling of CF can reduce the friction and wear of UHMWPE. In addition, the UHMWPE‐based composites reinforced with nitric acid‐treated CF exhibited better mechanical properties, lower friction coefficient, and higher wear resistance than those of untreated UHMWPE/CF composites. This was attributed to the improvement of interfacial adhesion and compatibility between CF and UHMWPE matrix caused by surface chemical modification of CF. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Composites of wood waste and high-density polyethylene (HDPE) resins and different melt flow index (MFIs) was development in this work. Therefore, it was possible to assess their effect on the mechanical, thermal, and morphologic properties of these composites. The formulations were prepared using a twin-screw extruder, and the MFI, tensile strength, flexural strength, and impact strength of the composites were analyzed. Additionally, the thermal properties were evaluated by differential scanning calorimetry (DSC). Finally, structural analyses using optical microscopy (OM) and scanning electron microscopy (SEM) were performed to assess the particles’ dispersion, distribution, and adhesion to the polymer matrix. The results indicated that composites from HDPE resins with a lower MFI yielded a better dispersion of the wood waste. During processing was observed, reduce the MFI and better dispersion of the polymer matrix, which positively influenced some of the mechanical properties analyzed in the study.  相似文献   

18.
This paper is concerned with the effects of the plasma surface treatment and the addition of CNT on the mechanical properties of carbon fiber/polytetrafluoroethylene (PTFE) composite. The tensile and flexural strength of composites containing CNT and plasma‐treated carbon fibers improved. The flexural strength first decreases with respect to the CF content. The flexural strength increases to 179 MPa for the plasma‐treated composite as compared with 167 MPa for the neat carbon fiber composites. The overall improvement is thus nearly 8%.  相似文献   

19.
Polypropylene (PP) blends with acrylonitrile-butadiene-styrene (ABS) were prepared using the styrene-ethylene-butylene-styrene copolymer (SEBS) as a compatibilizing agent. The blends were prepared in a co-rotational twin-screw extruder and injection molded. Torque rheometry, Izod impact strength, tensile strength, heat deflection temperature (HDT), differential scanning calorimetry, thermogravimetry, and scanning electron microscopy properties were investigated. The results showed that there was an increase in the torque of PA6/ABS blends with SEBS addition. The PP/ABS/SEBS (60/25/15%) blend showed significant improvement in impact strength, elongation at break, thermal stability, and HDT compared with neat PP. The elastic modulus and tensile strength have not been significantly reduced. The degree of crystallinity and the crystalline melting temperature increased, indicating a nucleating effect of ABS. The PP/ABS blends compatibilized with 12.5% and 15% SEBS presented morphology with well-distributed fine ABS particles with good interfacial adhesion. As a result, thermal stability has been improved over pure PP and the mechanical properties have been increased, especially impact strength. In general, the addition of the SEBS copolymer as the PP/ABS blend compatibilizer has the advantage of refining the blend's morphology, increasing its toughness and thermal stability, without jeopardizing other PP properties.  相似文献   

20.
Abstract

Some oxygen‐containing groups such as C?O and C–O were introduced onto high‐density polyethylene (HDPE) chains by an ultraviolet irradiation technique without the addition of any additives, and this method causes no chemical pollution to the environment. This groups content increases with irradiation time. Gelation took place in the HDPE irradiated for 16?hr, and the gel content also increases with irradiation time. After irradiation, the crystal shape and crystalline plane spacing of HDPE remained unchanged; the melting temperature decreased, whereas the crystallinity and hydrophilicity increased. Due to the introduction of polar groups, the interfacial interaction between sericite–tridymite–cristobalite (STC) particles and irradiated HDPE, and the mechanical properties of irradiated HDPE/STC (60/40) blend were improved. Compared with the yield and impact strength of HDPE/STC (60/40) blend, those of the corresponding blend irradiated for 16?hr were increased from 25.1?MPa and 56?J/m to 29.1?MPa and 283?J/m, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号