首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The modification of multiphoton ionization spectra through third harmonic generation in focused laser beam geometries is reported. A strong enhancement of the ionization peaks corresponding to the decay of thenf' autoionizing series of Kr and the observation of a double resonance in Xe, which is missing in low atomic density spectra, is shown to originate from excitation channels involving absorption of third harmonic photons. This excitation is demonstrated to occur in a significantly extended volume outside the focal region, thus strongly increasing the ionization yield.  相似文献   

2.
The nature and location of modifications of fatty acids are determined by resonance electron capture (REC) ionization of free acids and their methyl esters and pyrrolidides. The molecular negative ions (MNI) formed in the high resonance region undergo both charge-remote and charge-driven decomposition. The spectra of fragments arising from dissociation of these high-energy MNI contain decisive information on the original structure of the neutrals. The pyrrolidides of fatty acids result in simpler spectra on the one hand, and on the other hand these spectra give complete structure information.  相似文献   

3.
Excitation spectra of naphthalene dimer-argonn (n = 1-3) clusters are obtained by resonance enhanced multiphoton ionization time-of-flight mass spectroscopy. The spectra are generally independent of the number of attached argon atoms and reveal sharp structures which are fitted by superimposing independent monomer spectra. It is concluded that the rare-gas tagging technique reveals the presence of a T-shaped naphthalene dimer chromophore in the molecular beam.  相似文献   

4.
A new relation between resonance integral and distance is given. Its applicability has been tested by calculating spin densities, spectra, ionization potentials and bond lengths of some selected hydrocarbons.  相似文献   

5.
Multidimensional Franck-Condon simulations of the resonance enhanced multiphoton ionization (REMPI) and mass-analyzed threshold ionization (MATI) spectra of phenol-nitrogen are obtained from CASSCF, MRCI, and SACCI optimized geometries. In the REMPI simulations, the results are unsatisfactory, as the transitions associated with intermolecular modes are widely underestimated and much less intense than those associated with intramolecular modes. Conversely, the simulations of the MATI spectra show a good similarity to experiment. The best simulations are obtained in both instances from the SACCI optimized geometries. Furthermore, the simulations suggest that the two most prominent Franck-Condon envelopes present in the MATI spectra are due to the sigma and sigma + ngamma' combination bands in accord with the assignments of the MATI spectra of the analogous phenol-carbon monoxide cluster.  相似文献   

6.
Auto-ionizing states of neutral iridium were observed in the continuum structure near the first ionization limit using one-color and two-color two-step resonance laser ionization spectroscopy. The total angular momentum of 20 even-parity auto-ionizing states could be determined from a combined analysis of the two-color spectra obtained with ionization schemes using intermediate states with different total angular momentum. Double-resonant ionization schemes were evaluated by fluence-dependence measurements, and photo-ionization cross-sections for resonant ionization transitions were determined. We could also identify several high-lying members of ns, np and nd Rydberg series converging to the first ionization limit of the atom.  相似文献   

7.
A new Fourier transform ion cyclotron resonance mass spectrometer based on a permanent magnet with an atmospheric pressure ionization source was designed and constructed. A mass resolving power (full-width-at-half-maximum) of up to 80,000 in the electron ionization mode and 25,000 in the electrospray mode was obtained. Also, a mass measurement accuracy at low-ppm level has been demonstrated for peptide mixtures in a mass range of up to 1200 m/z in the isotopically resolved mass spectra.  相似文献   

8.
The mass resolved (2 + 2) resonance enhanced multiphoton ionization (REMPI) spectra of methylamine (MA) via the (nN,3s) Rydberg state were obtained in the 430-485-nm region using a time-of-flight (TOF) mass spectrometer. They have the same vibrational structure mainly due to NH2-wagging mode excitation. The parent ion relative intensity increases at longer wavelengths. The multiphoton ionization mechanism is discussed.  相似文献   

9.
Mass spectra were recorded for (2 + n) resonance enhanced multiphoton ionization (REMPI) of HCl as a function of resonance excitation energy in the 88865-89285 cm(-1) region to obtain two-dimensional REMPI data. Band spectra due to two-photon resonance transitions to number of Rydberg states (Ω' = 0, 1, and 2) and the ion-pair state V((1)Σ(+)(Ω' = 0)) for H(35)Cl and H(37)Cl were identified, assigned, and analyzed with respect to Rydberg to ion-pair interactions. Perturbations show as line-, hence energy level-, shifts, as well as ion signal intensity variations with rotational quantum numbers, J', which, together, allowed determination of parameters relevant to the nature and strength of the state interactions as well as dissociation and ionization processes. Whereas near-resonance, level-to-level, interactions are found to be dominant in heterogeneous state interactions (ΔΩ ≠ 0) significant off-resonance interactions are observed in homogeneous interactions (ΔΩ = 0). The alterations in Cl(+) and HCl(+) signal intensities prove to be very useful for spectra assignments. Data relevant to excitations to the j(3)Σ(0(+)) Rydberg states and comparison with (3 + n) REMPI spectra allowed reassignment of corresponding spectra peaks. A band previously assigned to an Ω = 0 Rydberg state was reassigned to an Ω = 2 state (ν(0) = 88957.6 cm(-1)).  相似文献   

10.
The character of the electronic absorption spectra of the metal complexes with 1,4-dihydroxy-9,10-anthraquinone depends on the ligand state, namely, on the degree of its ionization and predominant contribution of the tautomeric 9,10-, 1,10-, and 1,4-anthraquinoid resonance structures. The known complexes are classified in accordance with the ligand structure. The maximal contribution of the 1,10-anthraquinoid structure of the ligand is observed for the majority of monometal complexes, while that of 9,10-anthraquinoid structure is typical of bimetal complexes. Differences in the composite electronic absorption spectra of the mixed-ligand complexes are explained in terms of contribution of different quinizarin tautomeric forms with different degree of ionization.  相似文献   

11.
Small clusters of toluene(n) (n = 1-8) were created in a supersonic expansion of toluene with argon as a carrier gas. Mass-selected resonance enhanced multiphoton ionization spectra of these clusters were recorded for each n. For the dimer, the appearance of the spectrum under warm and very cold conditions was studied. We discuss previous results in the light of the present spectra. For n>2, the spectra resemble very closely that of the dimer.  相似文献   

12.
We present resonant two-photon ionization and IR-UV double resonance spectra of methylated xanthine derivatives including 7-methylxanthine dimer and theobromine dimer seeded in a supersonic jet by laser desorption. For 7-methylxanthine, theophylline and theobromine monomer we assign the lowest energy tautomer based on comparison with IR-UV double resonance spectra and calculated IR frequencies. For the 7-methylxanthine dimer, we observe hydrogen bonding on the N3H position suggesting 3 possible combinations, one that is reverse Watson-Crick type and two that are reverse Hoogsteen type. For the theobromine dimer, we observe a stacked structure. For trimethylxanthine dimers we infer a stacked structure as well.  相似文献   

13.
The regions of the energies of resonance capture of electrons by the molecules of fatty acids and their pyrrolidides and methyl esters have been established, which has permitted an explanation of the difference between the dissociative electron-capture mass spectra of these compounds and their chemical ionization and fast-atom bombardment negative-ion mass spectra. It has been shown that the dissociative electron-capture mass spectra of a high-energy resonance state characterized by the most far-reaching dissociation permit the unambiguous determination of the positions of multiple bonds in the initial molecules.Pacific Ocean Institute of Bioorganic Chemistry, Far Eastern Scientific Center, Academy of Sciences of the USSR. Translated from Khimiya Priordnykh Soedinenii, No. 3, pp. 348–353, May–June, 1987.  相似文献   

14.
Resonance-enhanced multiphoton ionization (REMPI) fragmentation patterns are obtained as a function of laser wave-length using a new, computer-controlled, high-resolution time-of-flight laser mass spectrometer system. REMPI mass spectra for triethylenediamine show extensive fragmentation, the pattern dependent upon the particular two-photon resonance (doorway state) selected.  相似文献   

15.
Photoelectron spectra of neutral silver trimers, grown in ultracold helium nanodroplets, are recorded after ionization with laser pulses via a strong optical resonance of this species. Varying the photon energy reveals that direct vertical two-photon ionization is hindered by a rapid relaxation into the lower edge of a long-living excited state manifold. An analysis of the ionization threshold of the embedded trimer yields an ionization potential of 5.74+/-0.09 eV consistent with the value found in the gas phase. The asymmetrical form of the electron energy spectrum, which is broadened toward lower kinetic energies, is attributed to the influence of the matrix on the photoionization process. The lifetime of the excited state was measured in a two-color pump-probe experiment to be 5.7+/-0.6 ns.  相似文献   

16.
Infrared spectra of the protonated monomers of glycine, alanine, valine, and leucine methyl esters are presented. These protonated species are generated in the gas phase via matrix assisted laser desorption ionization (MALDI) within the cell of a Fourier transform ion cyclotron resonance spectrometer (FTICR) where they are subsequently mass selected as the only species trapped in the FTICR cell. Alternatively, they have also been generated by electrospray ionization and transferred to a Paul ion-trap mass spectrometer where they are similarly isolated. In both cases IR spectra are then derived from the frequency dependence of the infrared multiple photon dissociation (IRMPD) in the mid-infrared region (1000-2200 cm(-1)), using the free electron laser facility Centre de Laser Infrarouge d'Orsay (CLIO). IR bands are assigned by comparison with the calculated vibrational spectra of the lowest energy isomers using density functional theory (DFT) calculations. There is in general good agreement between experimental IRMPD spectra and calculated IR absorption spectra for the lowest energy conformer which provides evidence for conformational preferences. The two different approaches to ion generation and trapping yield IRMPD spectra that are in excellent agreement.  相似文献   

17.
The resonance enhanced two-photon ionization time-of-flight (R2PI-TOF) excitation spectra of supersonically expanded complexes of isomeric 2,3-butanediols with a suitable chromophore, i.e. R-(+)-1-phenyl-1-propanol, represent powerful means for structurally discriminating the diol moiety and for investigating the nature of the intra- and intermolecular interactions involved in the complexes.  相似文献   

18.
Two conformational isomers of the aromatic hydrocarbon n-butylbenzene have been studied using two-color MATI (mass analyzed threshold ionization) spectroscopy to explore the effect of conformation on ionization dynamics. Cationic states of g auche-conformer III and anti- conformers IV were selectively produced by two-color excitation via the respective S 1 origins. Adiabatic ionization potentials of the gauche- and anti-conformations were determined to be 70146 and 69872 +/- 5 cm (-1) respectively. Spectral features and vibrational modes are interpreted with the aid of MP2/cc-pVDZ ab initio calculations, and ionization-induced changes in the molecular conformations are discussed. Complete basis set (CBS) ab initio studies at MP2 level reveal reliable energetics for all four n-butylbenzene conformers observed in earlier two-color REMPI (resonance enhanced multiphoton ionization) spectra. For the S 0 state, the energies of conformer III, IV and V are above conformer I by 130, 289, 73 cm (-1), respectively. Furthermore, the combination of the CBS calculations with the measured REMPI, MATI spectra allowed the determination of the energetics of all four conformers in the S 1 and D 0 states.  相似文献   

19.
Highly polar, non-gas-chromatographable compounds have few unambiguous analysis protocols for environmental applications. A recent environmental investigation, concerning the identification of a non-gas-chromatographable yellow component in chemical waste water and in effluents from a biological wastewater treatment plant required the use of a number of analytical approaches. Electrospray mass spectrometry, tandem mass spectrometry, high-performance liquid chromatography, nuclear magnetic resonance, and molecular spectroscopy of commercial and synthesized chlorodinitrophenol isomers were required in order to identify the specific isomer causing the color. The present report summarizes the electrospray ionization and tandem mass spectrometric studies that were used. The mass spectrometric study shows that two different isomers of chlorodinitrophenol exhibit very different collision-induced dissociation (CID) spectra. Differences in the tandem mass spectra can be attributed to the different structures of the anions formed from these two different isomers. Instrumentation that uses electrospray ionization and produces CID mass spectra and optical absorption spectra in a single analysis may be required in order to produce highly specific information on non-gas-chromatographable compounds found in the environment.  相似文献   

20.
A new type of combination ion source has been devised. It unites two complementary ionization methods, i.e., liquid injection field desorption/ionization (LIFDI) and electrospray ionization (ESI). This LIFDI-ESI combination ion source has been constructed for a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The LIFDI-ESI combination ion source can be switched between the LIFDI and ESI modes of operation within 15 min without breaking the vacuum. The source design and its operation are described. LIFDI-FT-ICR spectra of the ionic liquid trihexyl(tetradecyl)-phosphonium tris(pentafluoroethyl)-trifluorophosphate, polyethylene glycol 600, 2,3,4-tridodecyloxy-benzaldehyde, and [60]fullerene are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号