首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Hartree–Fock method (standard Roothaan closed-shell HF –LCAO theory) and the Hartree–Fock–Slater method (restricted HFS –LCAO –DV method developed by Baerends and Ros) have been compared with emphasis on the respective one-electron equations and on the matrix elements of the respective Fock operators. Using the same STO basis in the two cases, the matrix elements of the Fock operators and of their separate one-electron, Coulomb, and exchange contributions have been calculated for the same orbitals and density of the ground state of the diatomic molecule ZnO. The effects of methodical (exchange potential) and numerical (DV method, density fit) differences between the HF and HFS methods on the various matrix elements have been analyzed. As expected the methodical effect prevails and is responsible for the higher (less negative) values of the matrix elements of the HFS Fock operator compared to those of the HF Fock operator. Numerical effects are observable also and are caused by the difference in integration procedures (DV method), not by the density fit.  相似文献   

2.
The conditions for instability of solutions of Hartree–Fock and projected Hartree–Fock equations are derived in a form involving finite real symmetric matrices. These conditions are also expressed in terms of the Fock–Dirac density matrix, both at the spin–orbital and at the orbital level. The particular variations which give rise to the so-called singlet and triplet instabilities are described.  相似文献   

3.
Propagator or Green's function methods are used to analyze the time-dependent Hartree–Fock model. The non-hermitian matrix problem for the time-dependent Hartree–Fock solution is reduced to a problem related only to hermitian matrices. Particular attention is given to the calculation of oscillator strength in different approximations. The connection between the stability of the Hartree–Fock solution and the solution of the time-dependent Hartree–Fock problem is demonstrated. The results of numerical calculations are given for aniline, azulene and pyridine.  相似文献   

4.
To eliminate the cutoff effects in the supermolecule model (SM), the Fock matrix transformed supermolecule model (FTSM) is developed. In this model a cyclization of the cluster is performed by means of transformations of elements of the Fock matrix, thereby restoring the translational symmetry. Besides this fundamental enhancement, significant CPU time savings are realized because, in this new procedure, not all Fock matrix elements need to be calculated. The method is applied in a study of the structure of D-erythronic acid-3,4-carbonate in the crystal phase, where the new model is compared to the supermolecule model as well as the XRD experiment. The results are found to be in good agreement with experimental data.  相似文献   

5.
Three improvements on the direct self-consistent field method are proposed and tested which together increase CPU-efficiency by about 50%: (i) selective storage of costly integral batches; (ii) improved integral bond for prescreening; (iii) decomposition of the current density matrix into a linear combination of previous density matrices—for which the two-electron contributions to the Fock matrix are available—and a remainder ΔD, which is minimized; construction of the current Fock matrix only requires processing of the small ΔD which enhances prescreening.  相似文献   

6.
Numerical errors in total energy values in large-scale Hartree–Fock calculations are discussed. To obtain total energy values within chemical accuracy, 0.01 kcal/mol, stricter numerical accuracy is required as basis size increases. In molecules with 10,000 basis sizes, such as proteins, numerical accuracy for total energy values must be retained to at least 11 digits (i.e., to the order of 1.0D-10) to keep accumulation of numerical errors less than the chemical accuracy (0.01 kcal/mol). With this criterion, we examined the sensitivity analysis of numerical accuracy in Hartree–Fock calculation by uniformly replacing the last bit of the mantissa part of a double-precision real number by zero in the Fock matrix construction step, the total energy calculation step, and the Fock matrix diagonalization step. Using a partial summation technique in the Fock matrix generation step, the numerical error for total energy value of molecules with basis size greater than 10,000 was within chemical accuracy (0.01 kcal/mol), whereas with the conventional method the numerical error with several thousand basis sets was larger than chemical accuracy. Computation of one Fock matrix element with parallel machines can include the partial summation technique automatically, so that parallel calculation yields not only high-performance computing but also more precise numerical solutions than the conventional sequential algorithm. We also found that the numerical error of the Householder-QR diagonalization routine is equal to or less than chemical accuracy, even with a matrix size of 10,000. ©1999 John Wiley & Sons, Inc. J Comput Chem 20: 443–454, 1999  相似文献   

7.
A new computation procedure for direct calculation of the density matrix in the LCAO version of the restricted Hartree–Fock–Roothaan open-shell theory is analyzed. It is proved that the procedure is quadratically convergent and stable to the round-off errors independently of the Fock operator spectrum. The dependence of the limit matrix of the initial matrix is examined.  相似文献   

8.
The authors propose a new algorithm, "local K" (LK), for fast evaluation of the exchange Fock matrix in case the Cholesky decomposition of the electron repulsion integrals is used. The novelty lies in the fact that rigorous upper bounds to the contribution from each occupied orbital to the exchange Fock matrix are employed. By formulating these inequalities in terms of localized orbitals, the scaling of computing the exchange Fock matrix is reduced from quartic to quadratic with only negligible prescreening overhead and strict error control. Compared to the unscreened Cholesky algorithm, the computational saving is substantial for systems of medium and large sizes. By virtue of its general formulation, the LK algorithm can be used also within the class of methods that employ auxiliary basis set expansions for representing the electron repulsion integrals.  相似文献   

9.
We developed a novel parallel algorithm for large-scale Fock matrix calculation with small locally distributed memory architectures, and named it the "RT parallel algorithm." The RT parallel algorithm actively involves the concept of integral screening, which is indispensable for reduction of computing times with large-scale biological molecules. The primary characteristic of this algorithm is parallel efficiency, which is achieved by well-balanced reduction of both communicating and computing volume. Only the density matrix data necessary for Fock matrix calculations are communicated, and the data once communicated are reutilized for calculations as many times as possible. The RT parallel algorithm is a scalable method because required memory volume does not depend on the number of basis functions. This algorithm automatically includes a partial summing technique that is indispensable for maintaining computing accuracy, and can also include some conventional methods to reduce calculation times. In our analysis, the RT parallel algorithm had better performance than other methods for massively parallel processors. The RT parallel algorithm is most suitable for massively parallel and distributed Fock matrix calculations for large-scale biological molecules with more than thousands of basis functions.  相似文献   

10.
Representative helicoidal conformations of polyglycine infinite chains have been investigated by using periodic boundary conditions, the B3LYP hybrid functional, and large basis sets, by means of the CRYSTAL code. The exploitation of the helix roto‐translational symmetry permits to optimize at a relatively low cost the structure of systems whose unit cell contains more than 300 atoms, much larger than the one investigated till now. In the present calculations, the helix symmetry is exploited at three levels. First, for the automatic generation of the structure. Second, for the calculation of the one‐ and two‐electron integrals that enter into the Fock matrix definition. Only the irreducible wedge of the Fock matrix is computed. Finally, for the diagonalization of the Fock matrix, where each irreducible representation is separately treated. The efficiency and accuracy of the computational scheme are documented, by considering cells containing up to 47 glycine residues. Results are compared with previous calculations and available experimental data. The role of hydrogen bonding in stabilizing polyglycine conformers is also addressed. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

11.
A parallel Fock matrix construction program for FMO‐MO method has been developed with the distributed shared memory model. To construct a large‐sized Fock matrix during FMO‐MO calculations, a distributed parallel algorithm was designed to make full use of local memory to reduce communication, and was implemented on the Global Array toolkit. A benchmark calculation for a small system indicates that the parallelization efficiency of the matrix construction portion is as high as 93% at 1,024 processors. A large FMO‐MO application on the epidermal growth factor receptor (EGFR) protein (17,246 atoms and 96,234 basis functions) was also carried out at the HF/6‐31G level of theory, with the frontier orbitals being extracted by a Sakurai‐Sugiura eigensolver. It takes 11.3 h for the FMO calculation, 49.1 h for the Fock matrix construction, and 10 min to extract 94 eigen‐components on a PC cluster system using 256 processors. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

12.
The explicit forms of the spin density matrix variations which are responsible for the external instability in the restricted Hartree–Fock (RHF ) method are found. The RHF open shell instability matrix which guarantees the distorted wave function to belong to the same space as the initial one is derived for arbitrary spin.  相似文献   

13.
A parallel Fock matrix construction program for a hierarchical network has been developed on the molecular orbital calculation-specific EHPC system. To obtain high parallelization efficiency on the hierarchical network system, a multilevel dynamic load-balancing scheme was adopted, which provides equal load balance and localization of communications on a tree-structured hierarchical network. The parallelized Fock matrix construction routine was implemented into a GAMESS program on the EHPC system, which has a tree-structured hierarchical network. Benchmark results on a 63-processor system showed high parallelization efficiency even on the tree-structured hierarchical network.  相似文献   

14.
Ways to reduce the computational cost of periodic electronic structure calculations by using basis functions corresponding to linear combinations of planewaves have been examined recently. These contracted planewave (CPW) basis functions correspond to Fourier series representations of atom‐centered basis functions, and thus provide access to some beneficial properties of planewave (PW) and localized basis functions. This study reports the development and assessment of a direct inversion of the iterative subspace (DIIS) method that employs unique properties of CPW basis functions to efficiently converge electronic wavefunctions. This method relies on access to a PW‐based representation of the electronic structure to provide a means of efficiently evaluating matrix–vector products involving the application of the Fock matrix to the occupied molecular orbitals. These matrix–vector products are transformed into a form permitting the use of direct diagonalization techniques and DIIS methods typically employed with atom‐centered basis sets. The abilities of this method are assessed through periodic Hartree–Fock calculations of a range of molecules and solid‐state systems. The results show that the method reported in this study is approximately five times faster than CPW‐based calculations in which the entire Fock matrix is calculated. This method is also found to be weakly dependent upon the size of the basis set, thus permitting the use of larger CPW basis sets to increase variational flexibility with a minor impact on computational performance. © 2018 Wiley Periodicals, Inc.  相似文献   

15.
After having reviewed some pioneer integral approximations closely related to Rüdenberg's expansions of one‐ and two‐electron orbital products, we apply the previously described “Implicit Multi‐Center Integration” techniques on Roothaan's “restricted” Fock‐matrix components over standard atomic orbital bases. The resulting compact forms are very similar to the well‐known “Wolfsberg–Helmholz Conjecture” of “Extended‐Hückel Theory,” which relates the various off‐diagonal matrix elements of “restricted” Fock‐type to their corresponding diagonal counterparts. In this way, a “nonempirical Extended‐Hückel Theory” can be created. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
Several parallel algorithms for Fock matrix construction are described. The algorithms calculate only the unique integrals, distribute the Fock and density matrices over the processors of a massively parallel computer, use blocking techniques to construct the distributed data structures, and use clustering techniques on each processor to maximize data reuse. Algorithms based on both square and row-blocked distributions of the Fock and density matrices are described and evaluated. Variants of the algorithms are discussed that use either triple-sort or canonical ordering of integrals, and dynamic or static task clustering schemes. The algorithms are shown to adapt to screening, with communication volume scaling down with computation costs. Modeling techniques are used to characterize algorithm performance. Given the characteristics of existing massively parallel computers, all the algorithms are shown to be highly efficient for problems of moderate size. The algorithms using the row-blocked data distribution are the most efficient. © 1996 by John Wiley & Sons, Inc.  相似文献   

17.
We formulate a Hartree–Fock‐LAPW method for electronic band structure calculations. The method is based on the Hartree–Fock–Roothaan approach for solids with extended electron states and closed core shells where the basis functions of itinerant electrons are linear augmented plane waves. All interactions within the restricted Hartree–Fock approach are analyzed and in principle can be taken into account. In particular, we obtained the matrix elements for the exchange interactions of extended states and the crystal electric field effects. To calculate the matrix elements of exchange for extended states, we first introduce an auxiliary potential and then integrate it with an effective charge density corresponding to the electron exchange transition under consideration. The problem of finding the auxiliary potential is solved by using the strategy of the full potential LAPW approach, which is based on the general solution of periodic Poisson's equation. Here, we use an original technique for the general solution of periodic Poisson's equation and multipole expansions of electron densities. We apply the technique to obtain periodic potentials of the face‐centered cubic lattice and discuss its accuracy and convergence in comparison with other methods. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002  相似文献   

18.
The variational procedure of the Hartree–Fock and Kohn–Sham methods can be modified by adding one or more constraints that fix the number of electrons in a given number of molecular fragments. The corresponding Euler–Lagrange equations lead to a modified Fock matrix, where the contribution from the constraints only depends on the overlap matrix, when using the Mulliken or Hirshfeld atoms-in-molecules method. For all compounds in the test set, the energy shows a quadratic dependence on the fixed charges. This behavior provides a procedure to obtain the atomic electronegativity and hardness parameters in the electronegativity equalization method.  相似文献   

19.
A method is described for calculating cohesive energies of solids in the single-determinant approximation including the full Hartree-Fock exchange. The method involves (1) the construction of a rapidly convergent series in vectors of the direct and reciprocal lattice for the Fock matrix, (2) a decoupling procedure for the k -dependence of the Fock matrix, which works even in the case of strong interatomic overlap. An application to Li and Be is given. Agreement with experiment to 10% is achieved for the cohesive energies and to 5% for the equilibrium lattice constants.  相似文献   

20.
The algorithm of high-precision optimization of basis functions suggested previously for calculating the analytical Hartree–Fock orbitals of closed-shell atoms is generalized to open-shell systems described by the Roothaan method (1960). Expressions for the first (free gradient) and second (Hesse matrix) derivatives of the system's energy with respect to the nonlinear parameters (orbital exponents) of the basis functions are derived in terms of density matrices for the filled and open shells. An algorithm is proposed for high-precision optimization of the nonlinear parameters using these equations based on Murtagh–Sargent and Newton minimization procedures. To illustrate the application of this algorithm, we give optimization of the basis sets of Slater type functions for atoms from the second row, as well as for Al, Si, P, K, Sc, and Fe atoms. The analytical Hartree–Fock orbitals giving nearly Hartree–Fock energies are calculated with a high degree of accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号