首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of this work is the evaluation of the effects of plasma treatment and the addition of CNT on the mechanical properties of carbon fibre/PA6 composite. A powder impregnation process with integrated inline continuous plasma of carbon fibers was used to produce CF/PA6 composite. CF/PA6 composite was processed into test laminates by compression moulding, and interface dominated composite properties were studied. The tensile and impact strength of composites containing CNT and plasma‐treated carbon fibres improved obviously. The tensile strength of nanocomposite largely increases with the increasing of the CNT content and then decreases when the CNT content is over 2%. The hydroxyl groups of the fibers surface are in favor of the wettability of carbon fibers by the polar matrix resin, which is resulting in a further interaction of the fiber surface with the curing system of the matrix resin.  相似文献   

2.
Mechanical properties of carbon fiber (CF) and carbon nanotube (CNT)‐filled thermoplastic high‐density polyethylene (HDPE) composites were studied with particular interest on the effects of filler content and fiber surface treatment by coupling agent. Surface‐treated CF‐filled HDPE composites increased their tensile strength and impact strength, which is further increased with the addition of CNT. SEM showed that CNT‐coating‐treated CF‐HDPE composites show better dispersion of the filler into the matrix, which results in better interfacial adhesion between the filler and the matrix. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Continuous carbon fiber reinforced poly-ether-ether-ketone (CCF/PEEK) composites have attracted significant interests in mission-critical applications for their exceptional mechanical properties and high thermal resistance. In this study, we additively manufactured CCF/PEEK laminates by the Laser-assisted Laminated Object Manufacturing technique, which was recently reported by the authors. The effects of laser power and consolidation speed on the flexural strength of the CCF/PEEK composites were studied to obtain the optimal process parameters. Hot press postprocessing was performed to further improve the mechanical properties of the composites. Various fiber alignment laminates were prepared, and the flexural and tensile properties were characterized. The hot press postprocessing 3D printed unidirectional CCF/PEEK composites exhibited ultrahigh flexural modulus and strength of 125.7 GPa and 1901.1 MPa, respectively. In addition, the tensile modulus and strength of the composites reached 133.1 GPa and 1513.8 MPa. The results showed that the fabricated CCF/PEEK exhibited superior mechanical performance compare to fused filament fabrication (FFF) printed carbon fiber reinforced thermoplastics (CFRTP).  相似文献   

4.
In order to improve the thermo-oxidative stability of three-dimensional and four-directional braided carbon fiber/epoxy composites, we introduced a gradient interphase reinforced by graphene nanoplatelets (GN) between the carbon fiber and the matrix, with a liquid phase deposition strategy. Both the interlaminar shear strength and the flexural strength of the composites were improved after thermo-oxidative aging at 140 °C for various durations (up to 1200 h). The interfacial reinforcing mechanisms are explored by analyzing the structure of the interfacial phase, thermal conductivity, weight loss, surface topography, fiber/matrix interfacial morphology and thermomechanical properties of the composites. Results indicate that the GN-reinforced gradient interphase provides an effective shield against interface oxidation, assists in thermal stress transfer, and restricts the movement of the different phases of materials at the composite interface.  相似文献   

5.
Mechanical properties of hybrid PMMA composites reinforced with UHMWPE fiber and nano‐titanium dioxide (2, 4, 6, and 8 wt%) was investigated. In this work, the effect of UHMWPE fiber surface treatment on tensile, flexural, and impact properties of PMMA composites was studied. The fiber loadings were varied from 0% to 20%. The addition of UHMWPE fiber had caused a decline in the tensile strength of the PMMA composite. Results revealed that the presence of titanium dioxide on the surface treated UHMWPE fiber has further enhanced the efficiency of stress transfer from the matrix to the fiber thus improved the interfacial adhesion between the UHMWPE fiber and PMMA matrix.  相似文献   

6.
Carbon/carbon (C/C) composites with PyC/TaC/PyC or PyC/SiC/TaC/PyC multi-interlayers were prepared by isothermal chemical vapor infiltration, followed by Furan resin impregnation and carbonization. Microstructures, mechanical properties including flexural strength, ductile displacement, and fracture behaviors of composites were studied. Furthermore, composites were heat treated at 2000 °C to study the effects of heat treatment on mechanical properties and fracture behaviors. PyC/TaC/PyC and PyC/SiC/TaC/PyC multi-interlayers have been deposited uniformly in C/C composites. With the introduction of PyC/TaC/PyC multi-interlayers in C/C composites, the flexural strength decreases; however, the ductile displacement increases. The fracture behavior changes from brittleness (0% TaC) to pseudo-ductility (5% TaC) and high toughness (10% TaC). When PyC/SiC/TaC/PyC multi-interlayers are introduced in C/C composites, the flexural strength is improved remarkably from 270 MPa to 522 MPa, but the ductile displacement decreases obviously from 0.49 mm to 0.24 mm, and the fracture behavior becomes brittle again. After heat treatment at 2000 °C, the flexural strength decreases, but the ductile displacement increases and pseudo-ductility or high toughness can be obtained.  相似文献   

7.
The interface of fibrous composites is a key factor to the whole properties of the composites. In this study, the effects of air dielectric barrier discharge (DBD) plasma discharge power density on surface properties of poly(p‐phenylene benzobisoxazole) (PBO) fiber and the interfacial adhesion of PBO fiber reinforced poly(phthalazinone ether sulfone ketone) (PPESK) composite were investigated by several characterization methods, including XPS, SEM, signal fiber tensile strength, interlaminar shear strength, and water absorption. After the air DBD plasma treatment at a power density of 41.4 W/cm3, XPS analysis showed that some polar functional groups were introduced on the PBO fiber surface, especially the emergence of a new oxygen‐containing group (?O–C = O group). SEM observations revealed that the air DBD plasma treatment had a great influence on surface morphologies of the PBO fiber, while the signal fiber tensile strength results showed only a small decline of 5.9% for the plasma‐treated fiber. Meanwhile, interlaminar shear strength value of PBO/PPESK composite was increased to 44.71 MPa by 34.5% and water absorption of the composite decreased from 0.46% for the untreated specimen to 0.27%. The results showed that the air DBD plasma treatment can effectively improve the properties of the PBO fiber surface and the PBO/PPESK composite interface. Results obtained from the above analyses also showed that both the fiber surface and the composite interface performance would be reduced when an undue plasma discharge power density was applied. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Polyamide 66 (PA66) composites filled with clay and carbon fiber (CF) were prepared by twin‐screw extruder in order to study the influence of nanoparticle reinforcing effect on the mechanical behavior of the PA66 composites (CF/PA66). The mechanical property tests of the composites with and without clay were performed, and the fracture surface morphology was analyzed. The results show that the fracture surface area of the clay‐filled CF/PA66 composite was far smoother than that of the CF/PA66 composite, and there formed a tense interface on the CF surface after the addition of clay. The tensile and flexural strength of CF/PA66 composites with clay was improved. The impact strength decreased because of the high interfacial adhesion. In conclusion, the addition of clay favored the improvement of the higher interface strength and so had good effect on improving the tensile and flexural properties of the composites. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
The mechanical strength and modulus of chopped carbon fiber (CF)‐reinforced polybenzoxazine composites were investigated by changing the length of CFs. Tensile, compressive, and flexural properties were investigated. The void content was found to be higher for the short fiber composites. With increase in fiber length, tensile strength increased and optimized at around 17 mm fiber length whereas compressive strength exhibited a continuous diminution. The flexural strength too increased with fiber length and optimized at around 17 mm fiber length. The increase in strength of composites with fiber length is attributed to the enhancement in effective contact area of fibers with the matrix. The experimental results showed that there was about 350% increase in flexural strength and 470% increase in tensile strength of the composites with respect to the neat polybenzoxazine, while, compressive properties were adversely affected. The composites exhibited an optimum increase of about 800% in flexural modulus and 200% in tensile modulus. Enhancing the fiber length, leads to fiber entanglement in the composites, resulted in increased plastic deformation at higher strain. Multiple branch matrix shear, debonded fibers and voids were the failures visualized in the microscopic analyses. Defibrillation has been exhibited by all composites irrespective of fiber length. Fiber debonding and breaking were associated with short fibers whereas clustering and defibrillation were the major failure modes in long fiber composites. Increasing fiber loading improved the tensile and flexural properties until 50–60 wt% of fiber whereas the compressive property consistently decreased on fiber loading. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
There is a growing interest in the development of new materials through utilization of natural resources. This paper describes evaluation of water leached and alkali treated chopped grass fiber reinforced phenol formaldehyde composite. Here alkali treatment of grass fiber was carried out by varying the concentration of sodium hydroxide. The thermal stability of the composite was assessed by thermogravimetric analysis (TGA). Fourier transformation infrared spectroscopic study of both water leached and alkali treated grass fiber‐phenolic resin composite was also performed. Water absorption and swelling behavior of grass fiber phenolic resin composites in water were studied and the alkali treated grass fiber‐resin composite showed less water absorption and swelling. A composite prepared from 1% alkali treated grass fiber and 55% resin, showed the highest tensile strength whereas a composite prepared from 5% alkali treated grass fiber and 55% resin, showed maximum flexural properties. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
The carbon fiber (CF) surface plays a critical role in the performance of CF composite materials. Adipic acid modified epoxy resin potassium (AAEK) prepared with epoxy resin and adipic acid, and KOH was employed as the CF sizing agent. Then, series of surface properties of AAEK‐treated carbon fiber (CF‐AAEK) including surface charge, morphology, and groups were characterized by using Faraday cup, friction coefficient gauge, atomic force microscopy, X‐ray photoelectron spectroscopy, and thermogravimetry. The results indicated that the dispersion coefficient of CF‐AAEK was increased by 1.72 times and there were synergistic effects for the dispersion of short CFs during the sizing treatment process with AAEK. In addition, the flexural strength of treated short CF composite proved to increase by 168%, which evaluated that the better CF dispersion in the matrix was a critical factor for the mechanical property improvement of short CF‐AAEK/epoxy resin composites.  相似文献   

12.
Morphology, mechanical and thermal properties of short carbon fiber reinforced poly(arylene disulfide) synthesized by ring‐opening reaction of cyclic(arylene disulfide) oligomers were studied. These macrocyclic oligomers were prepared from 4,4′‐oxybis(benzenethiol) by oxidation coupling cyclization. Ring‐opening polymerization (ROP) was carried out by in situ melt molding in air. Oxidation reaction during the ROP was detected using the Raman spectrum technique. Three‐point bending tests were performed to determine the flexural properties of neat polymers and the composites. The results showed that the flexural strength and modulus of poly(arylene disulfide)/carbon fiber composites were greatly enhanced with the carbon fiber addition. The maximum weight loss peak temperatures of the composites increased with increasing short carbon fiber content. Good adhesion between carbon fiber and the matrix was observed using scanning electron microscopy (SEM) technique. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
Mechanical properties of composites made up of ultra‐high‐molecular‐weight polyethylene (UHMWPE) fiber, polyimide (PI), and TiO2 particles were investigated. The hybrid composite of 20 vol% of UHMWPE fiber with TiO2 showed tensile strength greater than UHMWPE fiber/PI composite. A positive hybrid effect in tensile strength is obtained. It is observed that addition of small amount of TiO2 to UHMWPE fiber/PI increased the tensile strength of the composite by 28%. With increase in TiO2 loading to 1 to 3 vol%, the impact strength of the hybrid composite is increased from 55 KJ/m2 to 69 KJ/m2. This maximum value is more than one and a half times greater than the impact strength of neat UHMWPE fiber/PI composite.  相似文献   

14.
This research works with the optimal design of marble dust-filled polymer composites using a multi-criteria decision-making (MCDM) technique. Polylactic acid (PLA) and recycled polyethylene terephthalate (rPET)-based composites containing 0, 5, 10, and 20 wt% of marble dust were developed and evaluated for various physicomechanical and wear properties. The results showed that the incorporation of marble dust improved the modulus and hardness of both PLA and rPET. Moreover, a marginal improvement in flexural strength was noted while the tensile and impact strength of the matrices were deteriorating due to marble dust addition. The outcomes of wear analysis demonstrated an improvement in wear resistance up until 10 wt% filler reinforcement, after which the incidence of dust particles peeling off from the matrix was observed, thereby reducing its efficiency. The best tensile modulus of 3.23 GPa, flexural modulus of 4.39 GPa, and hardness of 83.95 Shore D were obtained for 20 wt% marble dust-filled PLA composites. The lowest density of 1.24 g/cc and the highest tensile strength of 57.94 MPa were recorded for neat PLA, while the highest impact strength of 30.94 kJ/m2 was recorded for neat rPET. The lowest wear of 0.01 g was obtained for the rPET containing 5 wt% marble dust content. The experimental results revealed that for the examined criteria, the order of composite preference is not the same. Therefore, the optimal composite was identified by adopting a preference selection index-based MCDM technique. The findings demonstrated that the 10 wt% marble dust-filled PLA composite appears to be the best solution with favorable physical, mechanical, and wear properties.  相似文献   

15.
Jute fabrics-reinforced polypropylene (PP) composites (50% fiber) were prepared by compression molding. Composites were fabricated with non-irradiated jute fabrics/non-irradiated PP (C-0), non-irradiated jute fabrics/irradiated PP (C-1), irradiated jute fabrics/non-irradiated PP (C-2) and irradiated jute fabrics/irradiated PP (C-3). It was found that C-3 composite performed the best mechanical properties over other composites. Total radiation dose varied from 250–1000 krad and composites made of using 500 krad showed the best results. The optimized values (C-3 composites) for tensile strength (TS), bending strength (BS) and impact strength (IS) were found to be 63 MPa, 73 MPa and 2.93 kJ/m2, respectively.  相似文献   

16.
Carbon fiber reinforced Ultra High Molecular Weight Polyethylene (CF/UHMWPE) composites have been filled with acid treated carbon nanotube to enhance the adhesion. According to the modification, the interlaminar shear strength (ILSS) of composites has been greatly improved. Dynamic wetting method, XPS and SEM are used to examine the microscopic properties of resultant composites. The enhanced ILSS is attributed to the CNT interlock, which improves the wetting between carbon fibers and resins. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
Interface is an important microstructure for advanced polymer‐matrix composite. The composite interface is the bridge and the link for stress transferring between the fiber and the matrix resin. In this work, oxygen plasma treatment was used for modification of aramid fiber surface. The effects of plasma treatment power on interlaminar shear strength of composite were evaluated by short‐beam shear test. The morphologies of both the aramid fiber surface and its composite interface fracture were observed by SEM. The chemical structure and surface chemical composition of the plasma‐treated and separated fibers were analyzed by Fourier transform infrared (FTIR) and XPS, respectively. The results showed that the interlaminar shear strength of composite was enhanced by 33% with plasma treatment power of 200 W. The FTIR and XPS results indicated that the active functional groups were introduced onto the aramid fiber surface by plasma treatment forming chemical bonds with the poly(phthalazinone ether sulfone ketone) resin. The SEM results proved that the aramid fiber surface was roughened by plasma treatment enhancing the mechanical bond with the poly(phthalazinone ether sulfone ketone) resin. The composite rupture occurred from the composite interface to the fiber or the matrix resin. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
Electrical resistance (ER) and thermogram measurements were used to evaluate thermal transfer, interfacial and mechanical properties of carbon fiber reinforced thermoplastic polycarbonate composites. Carbon nanotubes (CNTs) were fairly uniformly dispersed in polycarbonates using a solvent dispersion method. The CNTs were then further dispersed with an additional time using a twin screw extruder. The effect of CNT on the mechanical properties of polycarbonate was evaluated using a thin film tensile test. For thermogram to evaluate the transferring temperature the composite was placed on a hotplate and copper wires were inserted in the composite at uniform thickness intervals. Due to the different inherent thermal conductivity of CNT, ER was measured to detect thermal changes in the carbon fiber/CNT-polycarbonate composites. The comparison of interlaminar shear strength (ILSS) was to investigate effects of CNT on mechanical and interfacial properties. The uniform distribution of CNTs affected all of these properties in carbon fiber-reinforced thermoplastic composite. Furthermore, heat transfer and heat release become more rapid with the addition of CNT than the without case.  相似文献   

19.
The flexural properties of isotactic polypropylene (PP) matrix composites reinforced with 5–30 vol% of unidirectional pitch‐based carbon, polyacrylonitrile (PAN)‐based carbon, e‐glass or aramid fibers were measured using both static and dynamic test methods. Previous research has shown that these pitch‐based carbon and aramid fibers are capable of densely nucleating PP crystals at the fiber surface, leading to the growth of an oriented interphase termed a “transcrystalline layer” (TCL), while the e‐glass and PAN‐based carbon fibers show no nucleating ability. The PP matrices examined included unmodified homopolymers, nucleated homopolymers and PP grafted with maleic anhydride (MA). The composites based on the unmodified PP homopolymers all exhibited poor fiber/matrix adhesion, regardless of fiber type and presence or absence of a TCL. The addition of nucleating agent to the PP matrix had no measurable effect on either the amount of TCL material in pitch‐based carbon‐fiber‐reinforced composites, as measured by wide‐angle X‐ray scattering, WAXS, or the static flexural properties of the composites reinforced with either type of carbon fiber. However, MA grafting reduced the transcrystalline fraction of the matrix in pitch‐based carbon‐fiber‐reinforced composites; at the highest level of MA grafting, the TCL was completely suppressed. In addition, high levels of MA grafting improved the transverse flexural modulus of the composites containing both types of carbon fibers, and reduced the extent of fiber pull‐out, indicating an improvement in fiber/matrix adhesion. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

20.
Pitch‐based short carbon fibers (CFs) were treated by air oxidation and cryogenic nitrogen, respectively. Thereafter the treated and untreated CFs were incorporated into polyimide (PI) matrix to form composites. The CFs before and after treatment were examined by XPS and SEM.The flexural strength of the specimen was determined in a three‐point test machine and the tribological properties of PI composites sliding against GCr15 steel rings were evaluated on an M‐2000 model ring‐on‐block test rig. The results show that the surface of the treated CFs became rougher. Lots of active groups formed on the CF surface after air oxidation.The treatment can effectively improve the mechanical and tribological properties in their PI composites due to the enhanced fiber‐matrix interfacial bonding. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号