首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiconfiguration self-consistent field calculations of the potential curve for the B1Πu state of Li2 show a 700 cm?1 high hump at 5.365 Å in good agreement with experimental estimates of 930 ± 300 cm?1 and 523 ± 50 cm?1.  相似文献   

2.
The photodetachment of electrons from gaseous SH? ions has been studied in an ion cyclotron resonance mass spectrometer using a flashlamp-pumped organic dye laser as a light source. The onset of the photodetachment process at 538.7 ± 0.3 nm (2.3016 ± 0.0013 eV, 18563 ± 10 cm?1) agrees well with that obtained in an earlier study. Coarse structure in the photodetachment curve with a spacing of 11.8 nm (0.052 eV, 422 cm?1) has been identified with spin-orbit coupling in the SH. radical. Finer structure, with a spacing of ca. 2.5 nm (0.011 eV, 89 cm?1), has also been observed in the curve, but remains unexplained.  相似文献   

3.
Using a coupled interferometer—spectrometer with a resolution of 0.02 cm?1 we have measured the Raman band profiles of the four low-frequency anthracene phonons ω1(ag), ω2(ag), ω6(bg) and ω7(bg) in the temperature range 2–70 K. These phonons possess very narrow bandwidth at low temperature which are convinently measured under high resolution. In particular the two lowest-frequency phonons ω1(ag) and ω6(bg) have a bandwidth at 2 K of 0.045 cm?1. The other two phonons ω7(bg) and ω2(ag) have bandwidths at 2 K of 0.165 and 0.4 cm?1, respectively. A detailed analysis of the bandwidth variation with temperature was made in terms of three-phonon decay processes. The exrerimental variation of the bandwidth with temperature was correctly reproduced assuming a single down-and up-process. The following results were obtained: ω1(ag): 49.45 cm?1 = 2×24.72 cm?1, 49.45 cm?1 = 98.45 cm?1 ?49.0 cm?1; ω6(bg): 57.50 cm?1 = 2×28.75 cm?1, 57.50 cm?1 = 108.50 cm?1 ?51.0 cm?1; ω7(bg): 71.20 cm?1 = 2×35.6 cm?1, 71.20 cm?1 = 120.20 cm?1 ?49.0 cm?1: ω2(ag): 82.40 cm?1 = 57.50 cm?1 +24.9 cm?1, 82.40 cm?1 = 138.4 cm?1 ?56 cm?1. The efficiency of the down- and up-processes is discussed in terms of the two-phonon density of states. The bandwidths at 2 K follows very closely the variation of the two-phonon sum density of states, whereas the relative importance of the up-processes follows well the two-phonon difference density of states. The anharmonic frequency shifts are corrected for the thermal expansion of the crystal using the Grüneisen single-phonon parameters and the thermal expansion coefficients given in the literature. This permits an estimation of the variation of the anharmonic shifts in the temperature range studied.  相似文献   

4.
Abstract

The EPR spectrum of N, N'-bis-(acetylacetone)ethylenediimino Cu(II), [Cu-en(acac)2], and N, N'-bis-(1,1,1-trifluoroacetylacetone)ethylenediimino-Cu(II), [Cu-en(tfacac)2], have been studied in doped single crystals of the corresponding Ni(II) chelate. The parameters in the usual doublet spin-Hamiltonian are found to be: Cu[en(acac)2], gz =2.183 ± 0.003, gx =2.047 ± 0.004, gy =2.048 ± 0.004, Az =204.8 × 10?4cm?1, Ax =31.5 × 10?4cm?1, Ay =27.1 × 10?4 cm?1, AzN= 12.8 × 10?4 cm?1 and AxN =AyN =14.3 × 10?4 cm?1: Cu[en(tfacac)2], gz =2.192 ± 0.002, gx =2.048 ± 0.004, gy =2.046 ± 0.004, Az =200.8 × 10?4 cm?1, Ax =31.1 × 10?4 cm?1, Ay =28.3 × 10?4 cm?1, AzN =12.8 × 10?4 cm?1 and AxN =AyN =14.6 × 10?4 cm?1. These parameters are related to coefficients in the molecular orbitals of the complex. It is found that the α-bonding is quite covalent and there is significant in-plane σ-bonding. From the nitrogen hyperfine structure it is determined that the hybridization on the nitrogen is sp2.  相似文献   

5.
The potential energy curve (PEC) for the ground state of AsP(X1Σ+) has been investigated by the highly accurate valence internally contracted multireference configuration interaction method in the Molpro2008 program package with the correlation consistent basis set. The PEC is fitted to the analytic Murrrell–Sorbie function (M–S function) from which the spectroscopic constants are determined. The present De, Be, αe, ωeχe, Re, and ωe values are of 4.2823 eV, 0.188622 cm?1, 0.000749 cm?1, 1.984427 cm?1, 2.0194 Å, and 598.60 cm?1, respectively. In addition, by numerically solving the radial Schrödinger equation of nuclear motion in the adiabatic approximation, the total of 96 vibration states is predicted when the rotational quantum number J = 0. The complete vibration levels, classical turning points, inertial rotation, and centrifugal distortion constants are reproduced. Comparison has been made with recent theoretical and experimental data. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

6.
Diagrammatic many-body perturbation theory is used to calculate the potential energy function for the X1 σ+ state of the CO molecule near the equilibrium nuclear configuration. Spectroscopic constants are derived from a number of curves which are obtained from calculations taken through third order in the energy. By forming [2/1] Padé approximants to the constants we obtain: re = 1.125 Å (1.128 Å), Be = 1.943 cm?1 (1.9312 cm?1), aBe = 0.0156 cm?1 (0.0175 cm?1), We = 2247 cm?1 (2170 cm?1), WeXe = 12.16 cm?1 (13.29 cm?1), where the experimental values are given in parenthesis.  相似文献   

7.
IR data of eight substituted flavanones and their isomeric hydroxychalkones have been recorded in order to assign the various absorption bands and to study the effect of substituents on C=C out-of-plane deformation (400–700 cm?1), C?H out-of-plane deformation (700–1000 cm?1), C?H in-plane deformation (1000–1300 cm?1), C?O stretch (≈1200 cm?1), OCH3 (1200–1300 cm?1), O?H deformation (1300–1400 cm?1), CH3 deformation (1300–1500 cm?1), benzene ring vibration (1400–1600 cm?1) and C=O stretch (≈1650 cm?1). The δC?H (ring A) in 2′,4′-dihydroxy-3-nitrochalkone appears at 826 cm?1 (s), while in the isomeric flavanone it shows up as three bands, viz., 807 (w), 833 (m) and 881 cm?1 (w). This difference principally arises due to the presence of the electron withdrawing nitro substituent. The C=O stretching vibration in flavanones appears at a higher frequency than in the corresponding hydroxychalkones. This is perhaps due to the lack of conjugation in the former class of compounds. Chloro substituents (ring B) in different positions exert differing effects on νC?O. These differences can be rationalized in terms of a field-effect exerted by the chlorine atom.  相似文献   

8.
Low-frequency Raman spectra of solid anisole and of solid anisole-d3 have been recorded at 130 K. The phenyl torsion observed at 148 cm?1 is shifted to 133 cm?1 upon deuteration of the methyl group. The twofold torsional barriers calculated from these frequencies are 4033 ± 110 cm?1 and 4094 ± 123 cm?1 indicating that coupling to other low-frequency modes in both cases is of the same order of magnitude. The methyl torsional mode was observed at 285 cm?1 in the spectrum of solid anisole and at 183 cm?1 in the spectrum of anisole-d3. The threefold barriers calculated using these frequencies are 1847 ± 20 cm?1 and 1465 ± 18 cm?1 respectively. These barrier values indicate that the methyl torsion is coupled to another low-frequency mode. A doublet centered at 230 cm?1 in anisole is shifted to 245 cm?1 in anisole-d3; it is proposed that this is due to a ring mode coupled to the methyl torsion. The splitting is interpreted as an example of Davydov splitting.  相似文献   

9.
We have calculated 64 points on the ground electronic state potential energy surface of the silyl radical (SiH3) using the MRD CI technique. This potential surface gives an inversion barrier of 1951 cm?1 and an equilibrium geometry of re = 1.480 Å and αe(HSiH) = 111.2°. Using the non-rigid invertor Hamiltonian with this potential we determine for SiH3 that ν1 = 2424 cm?1, ν2 = 778 cm?1, ν3 = 2106 cm?1, and ν4 = 976 cm?1; the inversion splitting is calculated to be 0.11 cm?1. Rotational constants and centrifugal distortion constants have also been calculated.  相似文献   

10.
Infrared photodissociation spectra of (CH3NH2) n clusters were measured fromn=2 ton=6 near the monomer absorption of the C-N stretching mode at 1044 cm?1 using a cw-CO2 laser. The clusters were size-selected by scattering from a helium beam. The spectrum of cold dimers shows a red (1038 cm?1) and a blue (1048 cm?1) shifted peak which is attributed to the non-equivalent position of the C-N in the open dimer structure. The larger clusters exhibit only one peak between 1045.4 cm?1 and 1046.0 cm?1 caused by the equivalent position of the C-N in the cyclic structures of the larger clusters. Structure calculations confirm these results. Secondly, the mixed complexes C2H4-CH3COCH3 and C2H4-(CH3COCH3)2 were investigated. The dimer spectrum, measured around the monomer frequency of the out-of-plane bending mode of C2H4 at 949 cm?1, shows two peaks at 946.2 cm?1 and 961.3 cm?1. This splitting is attributed to two different isomers that are found in configuration calculations. A similar behaviour is found for the trimer.  相似文献   

11.
Preparation, Properties and Electronic Raman Spectra of Bis(chloro)-phthalocyaninatoferrate(III), -ruthenate(III) and -osmate(III) Bis(chloro)phthalocyaninatometalates of FeIII, RuIII and OsIII [MCl2Pc(2-)]?, with an electronic low spin ground state are formed by the reaction of [FeClPc(2-)] resp. H[MX2Pc(2?)] (M = Ru, Os; X = Cl, I) with excess chloride in weakly coordinating solvents (DMF, THF) and are isolated as (n-Bu4N) salts. The asym. M? Cl stretch (νas(MCl)) is observed in the f.i.r. at 288 cm?1 (Fe), 295 cm?1 (Ru), 298 cm?1 (Os), νas(MN) at 330 cm?1 (Fe), 327 cm?1 (Ru), and 317 cm?1 (Os); only νs(OsCl) at 311 cm?1 is resonance Raman (r.r.) enhanced with blue excitation. The m.i.r. and FT-Raman spectra are typical for hexacoordinated phthalocyanines of tervalent metal ions. The UV-vis spectra show besides the characteristic π-π* transitions (B, Q, N, L band) of the Pc ligand a number of extra bands at 12–15 kK and 18–24 kK due to trip-doublet and (Pc→M)CT transitions. The effect of metal substitution is discussed. The r.r. spectra obtained by excitation between the B and Q band (λ0 = 476.5 nm) are dominated by the intraconfigurational transition Γ7 Γ 8 arrising from the spin-orbit splitting of the electronic ground state for FeIII at 536 cm?1, for RuIII at 961 cm?1 and OsIII at 3 028 cm?1. Thus the spin-orbit coupling constant increases very greatly down the iron group: FeIII (357 cm?1)< RuIII (641 cm?1)< OsIII (2 019 cm?1). The Γ7 Γ 8-transition is followed by a very pronounced vibrational finestructure being composed in the r.r. spectra by the coupling with νs(MCl), δ(MClN) and the most intense fundamental vibrations of the Pc ligand. In absorption only vibronically induced transitions are observed for the Ru and Os complex at 1 700-2800 rsp. 3100-5800 em?1 instead of the 0-0 phonon transitions. The most intense lines are attributed to combinations of the intense odd vibrational mo-des at ≈ 740 and 1120 cm?1 with ν5(MCI), δ(MClN).  相似文献   

12.
The syntheses and magnetic properties are reported for a series of copper(Ⅱ) complexes prepared from a pentadentate binucleating ligand 2,6-diformyl-4-methylphenol di(benzoyl-hydrazone) (H3L). These complexes incorporate different exogenous ions (X-) into a bridging position to form copper(Ⅱ) binuclear complexes of the formula [Cu2(H2L)X]2+, where X-= Br-(1), Cl-(2), HO-(3), C2H5O-(4) and C3H3N2- (5). The complexes have been characterized with variable temperature magnetic susceptibility (4.2-300 K) and the observed data were fit to those from a modified Bleaney-Bowers equation by least-squares method, giving the exchange integral 2J = -6.2 cm-1 for 1, -76.4 cm-1 for 2, -241.9 cm-1 for 3, -231.1 cm-1 for 4 and -343.8 cm-1 for 5. This suggested that there is an antiferromagnetic interaction between the Cu(Ⅱ) ions and the sequence of the effect of some exogenous bridging ligands on magnetic coupling is corresponding to that in spectrochemical series.  相似文献   

13.
Ruthenium(III) Phthalocyanines: Synthesis and Properties of Di(halo)phthalocyaninato(1?)ruthenium(III) Di(halo)phthalocyaninato(1?)ruthenium(III), [Ru(X)2Pc?] (X = Cl, Br, I) is prepared by oxidation of [Ru(X)2Pc2?]? (Cl, Br, OH) with halogene in dichloromethane. The magnetic moment of [Ru(X)2Pc?] is 2,48 μB (X = Cl) resp. 2,56 μB (X = Br) in accordance with a systeme of two independent spins (low spin RuIII and Pc?: S = 1/2). The optical spectra of the red violet solution of [Ru(X)2Pc?] (Cl, Br) are typical for the Pc? ligand with the “B” at 13.5 kK, “Q1” at 19.3 kK and “Q2 region” at 31.9 kK. Sytematic spectral changes within the iron group are discussed. The presence of the Pc? ligand is confirmed by the vibrational spectra, too. Characteristic are the metal dependent bands in the m.i.r. spectra at 1 352 and 1 458 cm?1 and the strong Raman line at 1 600 cm?1. The antisymmetric Ru? X stretch (vas(Ru? X)) is observed at 189 cm?1 (X = I) resp. 234 cm?1 (X = Br). There are two interdependent bands at 295 and 327 cm?1 in the region expected for vas(Ru? Cl) attributed to strong interaction of vas(Ru? Cl) with an out-of-plane Pc? tilting mode of the same irreducible representation. Only the symmetric Ru? Br stretch at 183 cm?1 is selectively enhanced in the resonance-Raman(RR) spectra. The Raman line at 168 cm?1 of the diiodo complex is assigned to loosely bound iodine. The broad band at 978 cm?1 in the RR spectra of the dichloro complex is due to an intraconfigurational transition within the electronic ground state of low spin RuIII split by spin orbit coupling.  相似文献   

14.
The electronic absorption, fluorescence and phosphorescence spectra of s-tetrazine at low temperatures (4.2-1.5 K) are reported and analyzed in the neat crystal and in several mixed crystals. The 3B3u-1Ag (nπ*) origin is at 18414 ± 5 cm?1 for neat tetrazine. In the mixed crystal several sites identified. The lowest energy origin is at 17453 cm?1 for tetrazine in pyrazine; 17 701 cm?1 in pyrimidine; and 17 676 cm?1 in pyridazine. The eB3u-1Ag (nπ*) origin is at 14 096 ± 2 cm?1 for the neat crystal. The phosphorescence lifetime of neat tetrazine is measured to be 96.8 ± 2.1 μs at 4.2 and 1.8 K. All the spectra are predominately composed of members of progressions in a single totally symmetric mode (ν6a) built upon site origins and vibrational fundamentals. The ν6a interval is: 743 (1Ag), 715 (3B3u), and 709 cm?1 (1B3u) in the neat tetrazine crystal; 732 (1Ag) and 705 cm?1 (1B3u in pyrazine host, 737 (1Ag) and 701 cm?1 (1B3u) in pyrimidine host, and 732 (1Ag) and 703 cm?1 (1B3u) in pyridazine host mixed crystals. All emission spectra may be analyzed by Oi → (ν″6a)on (i), i indicating the observed s  相似文献   

15.
Abstract

The EPR spectra of single crystals of 63Cu(II) doped N, N'-bis(salicylidene)ethylenediimine Ni(II), [Ni(sal)2en] and 7-methyl-N, N'-bis(salicylidene)ethylenediimine Ni(II), [Ni(7-me sal)2en] have been studied. The usual doublet spin-Hamiltonian parameters for the complexes have been found to be: Cu(II)[(sal)2en]; g z =2.192 ± 0.002; g x =2.046 ± 0.004; g y =2.049 ± 0.004; A z =201.0 × 10?4 cm?1; A x =29.3 × 10?4 cm?1; A y =31.3 × 10?4 cm?1; AN z =12.6 × 10?4 cm?1; A N x =14.5 × 10?4 cm?1; A N y =15.7 × 10?4 cm?1; A H z =6.3 × 10?4 cm?1; A H x =7.3 × 10?4 cm?1; A H y =7.9 × 10?4 cm?1; Cu(II)[(7-me sal)2en]; g z =2.189 ± 0.002; g x =2.037 ± 0.004; g y =2.046 ± 0.004; A z =203.0 × 10?4 cm?1; A x =36.9 × 10?4 cm?1; A y =22.7 × 10?4 cm?1; A N z =12.6 × 10?4 cm?1; A N x =13.3 × 10?4 cm?1; A N y =14.0 × 10?4 cm?1. Values of molecular orbital coefficients calculated for these complexes show that their bonding properties are similar to those of other compounds of this type. There is considerable covalency in the metal-ligand [sgrave]-bonds, and significant in-plane pi-bonding is present.  相似文献   

16.
The time‐dependent IR spectra during dehydration of fully hydrated Nafion show the reversible disappearance of the 1061 cm?1 and 969 cm?1 concurrent with the emergence of peaks at ~928 cm?1 and ~1408 cm?1. The first pair of group modes is associated with a dissociated exchange group (sulfonate) with a local C3V symmetry. The C3V group modes shift with state‐of‐hydration: The 969 cm?1 peak completely vanishes and the 1061 cm?1 is reduced to a small shoulder at 1070 cm?1 at end of dehydration. The C3V group modes are replaced by the pair of group modes of an associated exchange group (sulfonic acid) with C1 local symmetry. The density functional theory normal mode analysis confirms that the sulfonic acid/sulfonate site plays a dominant role in the C1 and C3V group modes, respectively. This work clarifies the importance of assigning fluoropolymers peaks as group modes rather than traditional single functional group assignments as is often the case with the ~1061 cm?1 and ~969 cm?1 C3V group modes. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1329–1334  相似文献   

17.
Phthalimide dithiosemicarbazone forms a 1:1 complex with osmium at pH 3.3–4.5 (?450 = 1.3 · 104 l mol?1 cm?1 ) which is applied to the photometric determination of osmium; Beer's law is obeyed for the range 1–12 μg Os ml?1. The oxidation of the reagent with cerium(IV) is catalyzed by osmium(VIII), and this reaction allows a more sensitive procedure for the determination of osmium; the calibration curve is linear over the range 0.05–0.4 μg Os ml?1. The interferences in both procedures are described.  相似文献   

18.
Synthesis and Spectroscopical Characterization of Di(halo)phthalocyaninato(1–)rhodium(III), [RhX2Pc1?] (X = Cl, Br, I) Bronze-coloured di(halo)phthalocyaninato(1–)-rhodium(III), [RhX2Pc1?] (X = Cl, Br) and [RhI2Pc1?] · I2 is prepared by oxidation of (nBu4N)[RhX2Pc2?] with the corresponding halogene. Irrespective of the halo ligands, two irreversible electrode reactions due to the first ringreduction (ER = ?0,90 V) and ringoxidation (EO = 0,82 V) are present in the cyclovoltammogram of (nBu4N)[RhX2Pc2?]. The optical spectra show typical absorptions of the Pc1?-ligand at 14.0 kK and 19.1 kK. Characteristic vibrational bands are at 1 366/1 449 cm?1 (i. r.) and 569/1 132/1 180/1 600 cm?1 (resonance Raman (r. r.)). The antisym. (Rh? X)-stretching vibration is observed at 294 cm?1 (X = Cl), 240 cm?4 (Br) and 200 cm?1 (I). Only the sym. (Rh? I)-stretching vibration at 133 cm?1 is r. r. enhanced together with a strong line at 170 cm?1, which is assigned to the (I? I)-stretching vibration of the incorporated iodine molecule. Both modes show overtones and combinationbands.  相似文献   

19.
The formation of complexes at pH 4.7 of the Hg(II) with five monothiosemicarbazone and two dithiosemicarbazone has been studied. The mercury(II) reacts with monothiosemicarbazones of salicylaldehyde (λmax = 363 nm, E = 1.69 × 104liters · mol?1cm?1), pi-colinadehyde (λmax = 363 nm, E = 2.38 × 104liters · mol?1cm?1), 6-methyl-picolinaldehyde (λmax = 363 nm, E = 2.28 × 104liters · mol?1cm?1), di-2-pyridylketone (λmax = 380 nm, E = 2.08 × 104liters · mol?1cm?1), and o-naphthoquinone (λmax = 540 nm, E = 1.03 × 104liters · mol?1cm?1) and with dithiosemicarbazones of 1,4-dihydroxyphthalimide (λmax = 430 nm, E = 2.56 × 104liters · mol?1cm?1) and dipyridylglyoxal (λmax = 363 nm, E = 2.37 × 104liters · mol?1cm?1). A critical comparison of the stoichiometry and apparent stability constant of complexes with mono- and dithiosemicarbazones is given.  相似文献   

20.
The electrochemical redox properties of a surface‐confined thin solid film of nanostructured cobalt(II) tetracarboxyphthalocyanine integrated with multiwalled carbon nanotube (nanoCoTCPc/MWCNT) have been investigated. This novel nanoCoTCPc/MWCNT material was characterized using SEM, TEM, zeta analysis and electrochemical methods. The nanoCoTCPc/MWCNT nanohybrid material exhibited an extra‐ordinarily high conductivity (15 mS cm?1), which is more than an order of magnitude greater than that of the MWCNT‐SO3H (527 µS cm?1) and three orders of a magnitude greater than the nanoCoTCPc (4.33 µS cm?1). The heterogeneous electron transfer rate constant decreases as follows: nanoCoTCPc/MWCNT (kapp≈19.73×10?3 cm s?1)>MWCNT‐SO3H (kapp≈11.63×10?3 cm s?1)>nanoCoTCPc (kapp≈1.09×10?3 cm s?1). The energy‐storage capability was typical of pseudocapacitive behaviour; at a current density of 10 µA cm?2, the pseudocapacitance decreases as nanoCoTCPc/MWCNT (3.71×10?4 F cm?2)>nanoCoTCPc (2.57×10?4 F cm?2)>MWCNT‐SO3H (2.28×10?4 F cm?2). The new nanoCoTCPc/MWCNT nanohybrid material promises to serve as a potential material for the fabrication of thin film electrocatalysts or energy‐storage devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号