首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G.P. de Gunst  E. Havinga 《Tetrahedron》1973,29(14):2167-2171
The photoreactions of 3,5-dinitroanisole with nucleophiles (mostly hydroxide ion) have been studied by sensitization and quenching as well as by flash photolysis experiments. The photosubstitution starts mainly from the π-π* triplet excited state (λmax ~ 475 nm; τ 5·10?8s or shorter depending on the concentration of nucleophile). The formation of substitution product is completed within ~ 10?6s. The occurrence of the radical anion (λmax ~ 550 nm; τ ~ 10?2-10?4s depending on the nature of the nucleophile) could be established. This cannot be intermediate in the photosubstitution reaction but is so in the formation of reduction products. The radical anion and, probably also, the substitution product seem to originate from a complex (λmax ~ 410 nm; τ ~ 5·10?7s) between the triplet excited aromatic compound and its nucleophilic reaction partner. The formation of this complex is a very fast process.  相似文献   

2.
Luminescence properties of divalent europium in the mixed‐anion hydride chloride EuHCl were studied for the first time. Olive‐green single crystals of EuHCl (PbFCl‐type structure: tetragonal, P4/nmm, a = 406.58(3) pm, c = 693.12(5) pm, c/a = 1.705, Z = 2) resulted from the reaction of elemental europium (Eu), sodium hydride (NaH) and sodium chloride (NaCl), while powder samples were prepared from the binary components europium dihydride (EuH2) and dichloride (EuCl2). Low temperature X‐ray powder diffraction proved the absence of phase transitions for 12(2) K ≤ T ≤ 295(2) K. Bright green emission was observed under UV‐excitation and assigned to the 4f65d1–4f7 transition of divalent europium. Temperature‐dependent luminescence absorption and emission, as well as lifetime measurements were carried out on single crystal and powder samples. Surprisingly, only limited concentration quenching was found. Additionally, two emission bands (485 and 510 nm) are observed, whose intensity ratio depends strongly on temperature. In order to explain this behavior for a single Eu2+ site, we suggest either a dynamical Jahn–Teller effect in the excited 5d1 state or emission from both a 4f65d1 state and a trapped exciton state.  相似文献   

3.
A series of powder materials of barium and calcium chlorophosphate activated by divalent europium have been prepared. These luminophors are isomorphous representatives of the hexagonal chlorapatites (Ba, Ca, Mg)10(PO4)6Cl2. In addition to x-ray diffractograms, excitation and emission spectra of luminescence have been studied at room and low temperatures (T ∽ 4 K). An increasing calcium content affects the luminescence properties of the solid solutions by changing the crystal field acting upon the Eu2+ ion. The appearance of a new low-temperature emission band with higher Ca2+ content indicates that the Eu2+ ions substitute on two different barium sites thus forming two types of luminescent centres. The luminescence arises from transitions between 4f65d and 4f7 configurations of Eu2+.  相似文献   

4.
A SrLiAl3N4:Eu2+ (SLA) red phosphor prepared through a high‐pressure solid‐state reaction was coated with an organosilica layer with a thickness of 400–600 nm to improve its water resistance. The observed 4f65d→4f7 transition bands are thought to result from the existence of Eu2+ at two different Sr2+ sites. Luminescence spectra at 10 K revealed two zero‐phonon lines at 15377 (for Eu(Sr1)) and 15780 cm?1 (for Eu(Sr2)). The phosphor exhibited stable red emission under high pressure up to 312 kbar. The configurational coordinate diagram gave a theoretical explanation for the Eu2+/3+ result. The coated samples showed excellent moisture resistance while retaining an external quantum efficiency (EQE) of 70 % of their initial EQE after aging for 5 days under harsh conditions. White‐light‐emitting diodes of the SLA red phosphor and a commercial Y3Al5O12:Ce3+ yellow phosphor on a blue InGaN chip showed high color rendition (CRI=89, R9=69) and a low correlated color temperature of 2406 K.  相似文献   

5.
Luminescence emission and uv-excitation properties of LaOBr: Tb3+, LaOBr: Ce3+, and LaOBr: Tb3+, Ce3+ phosphors were studied. The visible emission spectra of La0.995Tb0.005OBr consists of5D3,47F3–6 transitions in the wavelength range of 410–630 nm. The excitation of the Tb3+ ion gives a broad 4f → 5d transition band at 254 nm and weaker4f → 4f transition lines above 300 nm. The uv-excitation and emission of La0.995Ce0.005OBr at 290, 315, 355 (excitation), and 440 nm (emission) originate from transitions between the 4f-ground state and the four crystal field components of the5d2D excited state. The sensitization of Tb3+ luminescence in LaOBr with Ce3+ at varying concentrations is described and discussed. With increasing Ce3+ concentration the 5D37F transitions of Tb3+ quench totally and the5D47F transitions begin to quench gradually. The excitation spectrum of the5D47F5 transition of Tb3+ consists of four bands due to Tb3+ and Ce3+, of which the three Ce3+ bands increase in intensity and the Tb3+ band decreases as the Ce3+ concentration is increased.  相似文献   

6.
α-Methyl-o-nitrobenzyl isobutyrate and copolymers containing α-methyl-o-nitrobenzyl acrylate were irradiated in dilute solution with 20 ns flashes of 347 nm light or with 60 ps flashes of 355 nm light. The formation of the absorption spectrum of a nitronic acid with τ = 5 ns was observed in each case. A transient absorption spectrum similar to that of the nitronic acid was formed with τ ⩽ 0.5 ns. This spectrum is assumed to belong either to the triplet biradical formed upon intramolecular triplet state hydrogen abstraction or to nitronic acid formed very rapidly by intramolecular singlet state hydrogen abstraction, the latter mechanism being operative in parallel with the triplet mechanism.In 60vol.%EtOH-40vol.%H2O the nitronate anion was formed by dissociation of the nitronic acid with τ = 3 μs as indicated by a build-up of a new absorption band with λmax = 420 nm and by an increase in electrical conductivity. The conversion into the end products (nitroso compound and carboxylic acid) occurred at a much faster rate from the nitronic acid than from the nitronate anion: τ = 80 μs (CH2Cl2), τ = 360 μs (60vol.%EtOH-40.vol.%H2O, 10−4 M H2SO4) and τ = 10 ms (60vol.%EtOH-40vol.%H2O, no H2SO4). Conversion of the nitronate anion into another transient was inferred from the partial decrease in the electrical conductivity (τ ≈ 15 μs).Irradiation of the copolymers gave the same results as for the low molecular weight model compound, indicating that there is no polymer effect with respect to the kinetics or the mechanism of the photorearrangement. This conclusion was substantiated by the quantum yields for acid formation (0.24 – 0.25) measured with both the model compound and the copolymers.  相似文献   

7.
The occurrence of ΔF=±2, ±3, and ±4 transitions in the hyperfine structure of the Eu I lineλ 629.1 nm (4f 76s 2 a 8 S 7/2?4f 76s6p z 8 P 5/2) was investigated with the application of high-resolution laser-atomic-beam spectroscopy. It was possible to show that the appearance of such transitions depends on the magnitude of an external magnetic field. Calculations of the hyperfine Zeeman splittings of the excited and the ground state were performed. This allowed the identification of the forbidden transitions.  相似文献   

8.
The excitation profile for the intensity of electronic Raman transitions of terbium aluminum garnet (TbAlG) in the spectral range of 483.0–680.0 nm is reported. The electronic Raman transitions take place between the crystal field levels of the split 7F6 ground manifold of TbAlG with shifts of 73 cm?1 and 83 cm?1 and the electronic Raman process is induced with tunable pulsed and fixed wavelength cw lasers. The tunability of the former was employed to obtain detailed information of the behaviour of the Raman intensity if the wavelength of the exciting source is tuned throughout the region of 483.0–490.0 nm where 5Da47F6 absorptions of TbAlG occur and the data reveal the occurrence of interference effects. We also report measurements of the shape of the pulse — due to resonance enhanced electronic Raman scattered light — in real time. These studies reveal that the lifetime of the resonating state (which is responsible for the enhancement of the Raman intensity) as determined from the tailing end of the said pulse is within experimental error equal to the lifetime τ = 33.5 ± 1 μs of this state measured in a direct way from the intensity decay of an appropriate fluorescence transition of TbAlG.  相似文献   

9.
Nitridophosphates MP2N4:Eu2+ (M=Ca, Sr, Ba) and BaSr2P6N12:Eu2+ have been synthesized at elevated pressures and 1100–1300 °C starting from the corresponding azides and P3N5 with EuCl2 as dopant. Addition of NH4Cl as mineralizer allowed for the growth of single crystals. This led to the successful structure elucidation of a highly condensed nitridophosphate from single‐crystal X‐ray diffraction data (CaP2N4:Eu2+ (P63, no. 173), a=16.847(2), c=7.8592(16) Å, V=1931.7(6) Å3, Z=24, 2033 observed reflections, 176 refined parameters, wR2=0.096). Upon excitation by UV light, luminescence due to parity‐allowed 4f6(7F)5d1→4f7(8S7/2) transition was observed in the orange (CaP2N4:Eu2+, λmax=575 nm), green (SrP2N4:Eu2+, λmax=529 nm), and blue regions of the visible spectrum (BaSr2P6N12:Eu2+ and BaP2N4:Eu2+, λmax=450 and 460 nm, respectively). Thus, the emission wavelength decreases with increasing ionic radius of the alkaline‐earth ions. The corresponding full width at half maximum values (2240–2460 cm?1) are comparable to those of other known Eu2+‐doped (oxo)nitrides emitting in the same region of the visible spectrum. Following recently described quaternary Ba3P5N10Br:Eu2+, this investigation represents the first report on the luminescence of Eu2+‐doped ternary nitridophosphates. Similarly to nitridosilicates and related oxonitrides, Eu2+‐doped nitridophosphates may have the potential to be further developed into efficient light‐emitting diode phosphors.  相似文献   

10.
The complexes [Au3(dcmp)2][X]3 {dcmp=bis(dicyclohexylphosphinomethyl)cyclohexylphosphine; X=Cl? ( 1 ), ClO4? ( 2 ), OTf? ( 3 ), PF6? ( 4 ), SCN?( 5 )}, [Ag3(dcmp)2][ClO4]3 ( 6 ), and [Ag3(dcmp)2Cl2][ClO4] ( 7 ) were prepared and their structures were determined by X‐ray crystallography. Complexes 2 – 4 display a high‐energy emission band with λmax at 442–452 nm, whereas 1 and 5 display a low‐energy emission with λmax at 558–634 nm in both solid state and in dichloromethane at 298 K. The former is assigned to the 3[5dσ*6pσ] excited state of [Au3(dcmp)2]3+, whereas the latter is attributed to an exciplex formed between the 3[5dσ*6pσ] excited state of [Au3(dcmp)2]3+ and the counterions. In solid state, complex [Ag3(dcmp)2][ClO4]3 ( 6 ) displays an intense emission band at 375 nm with a Stokes shift of ≈7200 cm?1 from the 1[4dσ*→5pσ] absorption band at 295 nm. The 375 nm emission band is assigned to the emission directly from the 3[4dσ*5pσ] excited state of 6 . Density functional theory (DFT) calculations revealed that the absorption and emission energies are inversely proportional to the number of metal ions (n) in polynuclear AuI and AgI linear chain complexes without close metal???anion contacts. The emission energies are extrapolated to be 715 and 446 nm for the infinite linear AuI and AgI chains, respectively, at metal???metal distances of about 2.93–3.02 Å. A QM/MM calculation on the model [Au3(dcmp)2Cl2]+ system, with Au???Cl contacts of 2.90–3.10 Å, gave optimized Au???Au distances of 2.99–3.11 Å in its lowest triplet excited state and the emission energies were calculated to be at approximately 600–690 nm, which are assigned to a three‐coordinate AuI site with its spectroscopic properties affected by AuI???AuI interactions.  相似文献   

11.
The equilibrium has been studied between 275°and 363°K. Third-law calculations lead to ΔH°298(1) = -11.50 ±0.17 kcal/mol, from which Absorption bands of BrNO in the ultraviolet with emax = 215 nm) = 1.84±0.17 × 104 1/mol·cm, and in the red with emax = 708 nm) = 7.7±1.9 1/mol·cm at 298°K have been investigated. The rate of formation of BrNO has also been measured between 275°and 363°K.  相似文献   

12.
The investigation of the isotope shift (IS) and hyperfine structure (hfs) is extended from Eu 4f 7 6s7s to the complete configuration 4f 7 6s8s, by means of the transitions 432.3, 456.5, 463.0 and 493.8 nm to 4f 7 6s6p. A thorough experimental and theoretical analysis — including two further lines 492.8 and 498.7 nm from 4f 7 5d 2 — is carried out which e.g. confirms former fine structure calculations of one of us (J.F.W.) concerning some reclassifications. The discussion of the IS of the four levels (4f 7)6s8s with the sharing rule manifests again the need for inclusion of crossed-second-order effects. For the parameters we evaluated:g 3(4f, 6s)=?1, 2(2) mK andd=79, 3(1.0) mK. The ratiog 3/G 3=?5, 9(1.0)·10?6 is again in full agreement with those found by us in other Eu configurations. The single electron hfs splitting constantsa 4f 10 =?2, 3(4) mK,a 6s 10 =389(4) mK anda 8s 10 =49 (4) mK were also evaluated and compared to those found in 4f 7 6s7s.  相似文献   

13.
The equilibrium I2(g) + 2NO(g) = 2INO(g) has been studied at room temperature by ultraviolet absorption spectroscopy. The equilibrium constant has been measured as Kp = (2.7 ± 0.3) × 10?6 atm?1 at 298 K. Third-law calculations lead to ΔH°f,298 (INO) = 120.0 ± 0.3 kJ/mol. The relative absorption spectrum of INO has been measured between 225 and 300 nm. Quantitative measurements gave ?(λmax = 238 nm) = (1.79 ± 0.5) × 104 L/mol·cm and ?(410 nm) = 234.7 ± 21 L/mol·cm.  相似文献   

14.
Vacuum ultraviolet (VUV) spectroscopic properties of rare-earth RE3+- activated (RE3+ = Sm3+, Eu3+, Tb3+ and Dy3+) Ba6Gd9B79O138 borates (BGBO) are investigated. The strong absorption bands in the VUV range of un-doped and RE3+-activated BGBO were observed. The band range from 140 to 200 nm with a peak at about 173 nm results from the host lattice absorption. For Sm3+-activated BGBO, the charge transfer transition from O2- to Sm3+ was observed at 202 nm. In addition, it exhibits bright red emission originating from the Sm3+ f-f transitions of 4G5/26HJ (J = 5/2, 7/2 and 9/2). The O2--Eu3+ charge transfer (CT) at 249 nm is observed in the excitation spectrum for Eu3+-doped BGBO. For Tb3+-activated BGBO, the broad bands around 208 and 230 nm are due to the spin-allowed and spin-forbidden f-d transitions of Tb3+, respectively. In addition, the absence of the f-d transitions of Sm3+ and Dy3+ in the excitation spectra probably due to the photo-ionization effect. It is demonstrated that there are energy transfers from the BGBO host lattice to the luminescent activators depending on the activators.  相似文献   

15.
Luminescent ZnII clusters [Zn4L43-OMe)2X2] (X=SCN ( 1 ), Cl ( 2 ), Br ( 3 )) and [Zn7L63-OMe)23-OH)4]Y2 (Y=I ( 4 ), ClO4 ( 5 )), HL=methyl-3-methoxysalicylate, exhibiting blue fluorescence at room temperature (λmax=416≈429 nm, Φem=0.09–0.36) have been synthesised and investigated in detail. In one case the external heavy-atom effect (EHE) arising the presence of iodide counter anions yielded phosphorescence with a long emission lifetime (λmax=520 nm, τ=95.3 ms) at 77 K. Single-crystal X-ray structural analysis and time-dependent density-functional theory (TD-DFT) calculations revealed that their emission origin was attributed to the fluorescence from the singlet ligand-centred (1LC) excited state, and the phosphorescence observed in 4 was caused by the EHE of counter anions having strong CH−I interactions.  相似文献   

16.
LnBaCuCoO5 + δ (Ln = Y, Dy) cuprocobaltites were prepared. Their unit cell parameters were determined and their thermal expansion, electrical conductivity (σ), and Seebeck coefficient (S) were studied in air in the range 300–1100 K. The compounds have tetragonal structures (space group P4/mmm). Their unit cell parameters are a = 0.3867(2) nm, c = 0.7550(7) nm, V = 112.9(2) × 10?3 nm3 for YBaCuCoO4.98; and a = 0.3872(2) nm, c = 0.7562(7) nm, V = 113.4(2) × 10?3 nm3 for DyBaCuCoO5.01. They are p-type semiconductors. The electrical conductivity of DyBaCuCoO5 + δ is slightly lower and its Seebeck coefficient is 1.5–2 times higher than the respective values for YBaCuCoO5 + δ apparently because of different electronic configurations of the rare-earth cations in LnBaCuCoO5 + δ (4d 0 for Y3+ and 4f 9 for Dy3+). Dilatometric measurements show that the LnBaCuCoO5 + δ phases in the range 300–1100 K do not experience structural phase transitions, and their linear thermal expansion coefficients (LTEC) are 14.3 × 10?6 K?1 for Ln = Y and 14.7 × 10?6 K?1 for Ln = Dy.  相似文献   

17.
The photooxidation of chloral was studied by infrared spectroscopy under steady-state conditions with irradiation of a blackblue fluorescent lamp (300 nm < λ < 400 nm, λmax = 360 nm) at 296 ± 2 K. The products were hydrogen chloride, carbon monoxide, carbon dioxide, and phosgen. The kinetic results reveal that the reaction proceeds via chain reaction of the Cl atom: The results lead to the conclusion that mechanism (B) is confirmed to be more likely than mechanism (A), which was favored at one time by Heicklen for the mechanism of the oxidation of trichloromethyl radicals by oxygen molecules: The ratio of the initial rates of CO and CO2 formation gave k7/k6 = 4.23M?1, and the lower limit of reaction (5) was found to be 3.7 × 108M?1 sec?1.  相似文献   

18.
Isotopic selectivities and isotope ratio enhancement factors have been calculated for 4f55d6s2 9D 5 0 -4f75d6s6p 9D6 (585.622 nm) transition of gadolinium and for 5d6s2 2D3/2-5d6s6p 4F 3/2 0 (753.9 nm) transition of lanthanum by simulating the spectra assuming natural isotopic abundance of the samples. The atomic line shapes are assumed to be Lorentzian. Isotopic selectivities and isotope ratio enhancement factors for single step excitations have been computed. The isotope ratio enhancement factors estimated by us are half the value obtained by Young. et al. This is because the isotope ratio enhancement obtained by them is for a two colour RIMS where as our computations for selectivities are for a single step excitation. Considering the statistical error in the experimental values, our estimated isotopic selectivities are in good agreement with the available experimental data.  相似文献   

19.
Isotope shift studies in the gadolinium spectra have been extended in the region 4140–4535 Å. Isotope shift Δσ(156–160) have been measured in 315 lines of the neutral and singly ionised galolinium atom using a recording Fabry—Perot Spectrometer and gadolinium samples enriched in 156Gd and 160Gd isotopes. Some of the Gd I lines studied involve transitions from newly identified high odd levels of 4f86s 6p, 4f75d 6s 7s and 4f75d3 configurations to low even levels of 4f86s2 and 4f76s26p configurations. Electronic configurations of the energy levels have been discussed on the basis of observed isotope shifts. In some cases assigned configurations have been revised and probable configurations have been suggested.  相似文献   

20.
The emission spectra of microcrystalline Cs2NaTbCl6 and Cs2Na(Y0.99Tb0.01)Cl6 have been measured at room temperature and at 77 K. The crystal structures of these compounds are face-centered cubic and the terbium (III) ions lie at sites of octahedral (Oh) symmetry surrounded by six chloride ions. Emission is observed from both the 5D3 and 5D4 excited states of Tb3+. Assignments have been made for nearly all of the magnetic-dipole transitions split out of the Tb3+7F6, 7F5, 7F4, 7F3, 7F2, 7F15D4 and 7F4, 7F25D3 transitions. These assignments are based on the calculated transition energies and relative magnetic-dipole strengths and intensities obtained from a weak-field crystal-field analysis of octahedral TbCl63? units. Magnetic-dipole lines dominate the spectra for transitions of ΔJ = ±1 free-ion parentage, whereas both magnetic-dipole lines and vibronically induced electric-dipole lines contribute significantly to the emission intensities of the ΔJ = 0, ±2 transitions. The crystal-field sub-levels of both 5D3 and 5D4 appear to reach a Boltzmann thermal equilibrium prior to emission. Emission from 5D3 is partially quenched in going from low temperature to high temperature and in going from Cs2NaYCl6: Tb3+ (1%) to Cs2NaTbCl6.This study has led to the identification and assignment of nearly all of the pure magnetic-dipole transitions split out of the Tb3+7F6, 7F5, 7F4, 7F3, 7F2, 7F15D4 and 7F4, 7F25D3 transitions in crystal-line Cs2NaTbCl6. The assignments were based on calculated transition energies and relative magnetic-dipole strengths (and intensities) obtained from a (weak-field) crystal-field analysis of octahedral (Oh) TbCl63? clusters. Excellent agreement between the calculated and observed relative intensities of the magnetic-dipole lines was achieved by assuming a Boltzmann equilibrated set of crystal-field sub-levels for both the 5D4 and 5D3 emitting states. Furthermore, the experimental results suggest that 5D45D3 relaxation is temperature-dependent.The energy levels calculated and displayed in table 1 appear to be qualitatively correct and are in semiquantitative agreement with the emission results (as interpreted in section 4). Calculated and observed transition energies for the assigned magnetic-dipole transitions generally agree to within 0.2%.One of the most remarkable features of the emission spectra obtained on Cs2NaTbCl6 is the absence of any vibrational structure in the ΔJ = ± 1 transitions (7F6, 7F35D4 and 7F4, 7F25D3), and the presence of extensive vibrational structure in the ΔJ = O, ±2 transitions (7F6, 7F4, 7F25D4). If other than OO vibronic transitions do contribute to the ΔJ = ±1 emissions, their intensities must be at least two or three orders-of-magnitude weaker than the OO magnetic-dipole lines. Vibronically induced electric-dipole transitions appear, however, to make substantial contributions to the 7F6, 7F4, 7F25D4 emission spectra. A clear-cut theoretical explanation for the absence of vibrational structure in the ΔJ = ±1 transitions is not readily apparent. We are presently examining this problem in greater detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号