首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nicergoline, a semisynthetic ergot derivative, which, in its crystalline state, is insoluble in water, was dispersed in polyvinylpyrrolidone K30 (PVP K30) to improve drug particle dissolution. Preformulation studies were carried out initially by differential scanning calorimetry and X-ray powder diffraction in order to predict the conditions and the possibility to actually obtain solid dispersions by mixing the two components at different proportions. Solid dispersions were finally prepared by dissolving nicergoline and PVP K30 in chloroform that was next evaporated under reduced pressure. Under these conditions, an amorphous powder was recovered in every proportion of the two components. Nicergoline demonstrated to be physically and chemically stable for 1 year. The dissolution studies revealed a very high dissolution rate of nicergoline from solid dispersions only lower than the pure amorphous form. This is the consequence of the molecular dispersion of nicergoline in the polymer that enhances the rate of drug release from the polymer.  相似文献   

2.
Summary Solid dispersions were prepared to enhance the dissolution rate of rofecoxib. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) were used for the characterization of solid dispersions of polyvinyl pyrrolidone (PVP):talc:drug (3:1:1) and hydroxypropyl methylcellulose (HPMC):talc:drug (4:1:1). The DSC study indicated that PVP solid dispersion showed formation of fusion solution while HPMC solid dispersion showed no intermolecular fusion during the preparation of solid dispersions by spray dry process. The dissolution profiles and the calculated times for 75 and 90% drug release showed that dissolution rate of rofecoxib was improved in solid dispersions as compared to pure drug and physical mixtures. The DSC and XRD were successfully employed to find out the crystalline state of drug in the both solid dispersions. PVP solid dispersion gave better dissolution rate than HPMC solid dispersion. The drug was transformed from crystalline to amorphous form in PVP solid dispersion which was further conformed by XRD and DSC. The PVP:talc:drug solid dispersion can be used for the dissolution enhancement and thereby bioavailability of rofecoxib.  相似文献   

3.
It is very difficult to follow rapid changes in polymorphic transformation and crystallization and to estimate the species recrystallized from the amorphous form. The aim of this study was to clarify the structural changes of amorphous terfenadine and to evaluate the polymorphs crystallized from amorphous samples using XRD-DSC and an atomic force microscope with a thermal probe (micro-TA). Amorphous samples were prepared by grinding or rapid cooling of the melt. The rapid structural transitions of samples were followed by the XRD-DSC system. On the DSC trace of the quenched terfenadine, two exotherms were observed, while only one exothermic peak was observed in the DSC scan of a ground sample. From the in situ data obtained by the XRD-DSC system, the stable form of terfenadine was recrystallized during heating of the ground amorphous sample, whereas the metastable form was recrystallized from the quenched amorphous sample and the crystallized polymorph changed to the stable form. Obtained data suggested that recrystallized species could be related to the homogeneity of samples. When the stored sample surface was scanned by atomic force microscopy (AFM), heterogeneous crystallization was observed. By using micro-TA, melting temperatures at various points were measured, and polymorph forms I and II were crystallized in each region. The percentages of the crystallized form I stored at 120 and 135 °C were 47 and 79%, respectively. This result suggested that increasing the storage temperature increased the crystallization of form I, the stable form, confirming the temperature dependency of the crystallized form. The crystallization behavior of amorphous drug was affected by the annealing temperature. Micro-TA would be useful for detecting the inhomogeneities in polymorphs crystallized from amorphous drug.  相似文献   

4.
In this work, the enhancement of drug dissolution rate through the preparation of new formulations containing Nimodipine in molecular level dispersion or in nanodispersion into poly(vinyl pyrrolidone) (PVP) matrix, was investigated. Differential scanning calorimetry (DSC) and modulated-temperature differential scanning calorimetry (MTDSC) in combination with X-ray powder diffractometry (XRPD) and scanning electron microscopy (SEM) studies showed that Nimodipine was amorphous in solid dispersions of 10 or 20 mass%, and mainly dispersed on a molecular level. This behaviour is attributed to the strong interactions taking place between the amine group of Nimodipine and carbonyl group of PVP. At higher drug loadings, crystal reflections in XRPD patterns and melting peaks of Nimodipine in DSC traces, indicated presence of drug in crystalline form. Micro-Raman studies in combination with SEM micrographs showed that the mean particle size increases with drug content in the formulations, up to 10 μm. Moreover, both XRPD patterns and micro-Raman spectra seem to indicate that Nimodipine crystallized in a second, thermodynamically stable, crystal modification II. The physicochemical characteristics of Nimodipine and the particle size distribution directly affect the dissolution rate enhancement, which is higher in amorphous dispersions.  相似文献   

5.
Solid dispersions of valdecoxib were prepared with the objective of dissolution enhancement by melt granulation technique using polyvinyl pyrollidone (PVP K 30) and polyethylene glycol (PEG 4000) alone (1:1) and in combination (1:0.5:0.5). Phase solubility studies showed a linear increase in valdecoxib solubility with increase in polymer concentration in both the cases. The FTIR spectroscopic studies showed the stability of valdecoxib and absence of well defined valdecoxib—PVP K 30–PEG 4000 interaction. Powder X-ray diffraction (XRD) and differential scanning calorimeter (DSC) were used to characterize the solid state of the dispersion, indicated a complete transformation of drug from crystalline to amorphous form. In vitro dissolution studies performed in 0.1 N HCl showed a significant enhance in dissolution rate when PEG 4000 and PVP K 30 were used in combination. Improved drug dissolution by both the carriers may be attributed to the improved wettability, reduction in drug crystallinity and solubilizing effects from solid dispersions of valdecoxib. Accelerated stability studies of solid dispersion with PVP K 30 and PEG 4000 does not show any significant change in the drug content and dissolution profile in 6 months study period. This study concluded that the dissolution rate of valdecoxib can be modulated by appropriate levels of hydrophilic carriers.  相似文献   

6.
The physical stability of amorphous drug in solid dispersion was estimated using differential scanning calorimetry (DSC). Tolbutamide (TB) and flurbiprofen (FBP) were selected as insoluble drugs in water. Polyvinylpyrrolidone (PVP) was selected as a polymer for solid dispersion. Solid dispersions of various ratios of TB or FBP and PVP-K25 were prepared by solvent evaporation method and the induction period of crystallization from amorphous drug in solid dispersion was measured by DSC. Compared with FBP, the induction period of crystallization from TB was delayed by an addition of PVP. The improvement of the physical stability by the addition of PVP-K25 was estimated from the activation energy of diffusion of drug molecules and the interfacial free energy between drug crystal and supercooled liquid of drug in solid dispersion. From thses results, the hindrance of the diffusivity of the drug molecule might be mainly affected the delay of the induction period of crystallization of TB and FBP.  相似文献   

7.
The induction period of crystallization of amorphous naproxen in solid dispersion was measured by DSC. Hydroxypropylmethylcellulose acetate succinate LG (HPMCAS-LG) was selected as a polymer of solid dispersion, because of the excellent inhibitory effect of crystallization. Naproxen was chosen as a model drug having poor water solubility and poor physical stability of glassy state. The prediction of crystallization of amorphous naproxen in solid dispersion at the desired storage temperature or the desired polymer content was carried out. If the storage condition satisfied the requirement that was either more than 90% of HPMCAS-LG content at 333 K or below storage temperature of 301 K for 50% HPMCAS-LG content, the induction period of crystallization of naproxen in solid dispersion would be more than 1 year. The storage period of amorphous drug in solid dispersion of desired storage temperature and desired drug content might be predictable from measurement data of induction period of crystallization.  相似文献   

8.
The effect of cryogenic grinding on the indomethacin (IMC) and its mixtures with polyvinylpyrrolidone (PVP) was studied by powder X-ray diffraction and differential scanning calorimetry. Cryoground mixtures were shown to form glass solutions. PVP inhibits the crystallization of IMC from the amorphous state: the crystallization temperature of IMC in the mixtures with PVP increases, and the amorphous state is preserved longer on storage. The mixtures were characterized by Raman spectroscopy. Dissolution of the IMC in the cryoground mixtures is higher as compared to the pure form, also after a prolonged storage.  相似文献   

9.
Micronization of a sulfonylurea antidiabetic agent, tolbutamide, using rapid expansion of supercritical solution with solid co-solvent (RESS-SC) process was investigated in this study. Menthol was selected as the solid co-solvent in the RESS-SC process owing to its high vapor pressure and ease of removal by sublimation. The tolbutamide particles were micronized successfully from its original mean size of 89.4 ??m to the smallest mean size of 2.1 ??m through the RESS-SC process. The use of solid co-solvent in this process enhanced the saturated solubility of tolbutamide in supercritical carbon dioxide and inhibited the particle growth during pressure expansion after the nozzle. In addition, polymorph conversion from form I to form II after the RESS-SC process was confirmed by XRD and DSC analyses. Measurements of the dissolution rate profiles before and after the RESS-SC process were also investigated. It is shown that the micronized tolbutamide by the RESS-SC process had novelty in dissolution behavior compared to that of the original compound. Its dissolution rate was enhanced by 8.8 times after the RESS-SC process.  相似文献   

10.
When the anatase form of TiO2 was heated at a constant rate of 6°C/min to 450°C it crystallized from hydrated amorphous TiO2 gel at 170°C in pure water or at <150°C in NaOH solutions. The uptake of Na+ ions into crystallized anatase affected the reactions subsequent to this initial crystallization while only anatase crystals continued to grow with increasing temperature in pure water. Immediately after the nearly amorphous second stage at 325°C, conversion from colloidal anatase particles to square sheet-shaped bronze-type TiO2 crystals began at 350°C and was complete at 425°C in 0.5 M NaOH. This conversion was considered to proceed via crystallographic shear rather than via dissolution and precipitation since this also happened with thermal treatment to 700°C in air.  相似文献   

11.
The amorphous complex of 2-hydroxypropyl--cyclodextrin (HP--CyD) with an oral hypoglycemic agent, chlorpropamide (CPM), in a molar ratio of 1:1 was prepared by the spray-drying method. The effects of storage (temperature and humidity) and moulding pressure on the polymorphic transition of CPM in HP--CyD matrix were investigated, in comparison with those of the CPM polymorphs, Form A (stable form) and Form C (metastable form). The formation of an amorphous complex of CPM with HP--CyD was confirmed by powder X-ray diffractometry and differential scanning calorimetry. During storage at various temperature and humidity conditions, the metastable Form C of CPM converted to the stable Form A, where the conversion proceeded according to the Jander equation with an activation energy of 51 kJ/mol (25–60–°C) and a reaction-order of 1.55 with respect to water content (relative humidity (RH) 20–75%). No polymorphic transition of Form A crystals was observed under the experimental conditions. In the case of the amorphous HP--CyD complex, Form C crystals were slowly produced, but the further conversion of the resulting Form C to Form A was markedly suppressed in HP--CyD matrix. Upon compression (2000kg/cm2), Forms A and C were converted to amorphous CPM in a major portion and Forms C and A, respectively, in a minor portion. The polymorphic transition behavior was clearly reflected in the dissolution rate of CPM, i.e., (1) the dissolution rate was in the order of HP--CyD complex (Form C) Form A, and (2) the dissolution rate of Forms A and C after the compression increased because of the conversion to amorphous state, while the complex maintained the fast dissolving property even after the compression. The results indicated that HP--CyD is useful not only for converting crystalline CPM to an amorphous substance, but also for maintaining the metastable form with fast dissolution rate, Form C, over a long period.  相似文献   

12.
A new benzofuroquinoline derivative, 3,9-bis(N,N-dimethylcarbamoyloxy)-5H-benzofuro[3,2-c]quinoli ne-6-one (KCA-098), shows poor oral absorption due to practical insolubility in water. In this study, a co-grinding technique employing a water-soluble polymer was used for improvement of the dissolution rate of KCA-098. Powder X-ray diffraction patterns and IR spectra of KCA-098 showed the conversion of the drug from a crystal state to an amorphous state by grinding with a polymer such as hydroxypropyl cellulose (HPC-SL) or polyvinylpyrrolidone (PVP K30). The particle size of KCA-098 was remarkably reduced to a submicron size by grinding with HPC-SL. The co-ground mixture with HPC-SL showed a rapid dissolution rate and maintained supersaturation for more than 1 h. On the other hand, the co-ground mixture with PVP K30 showed rapid dissolution and supersaturation for a shorter period. These data suggest that the rapid dissolution rate was obtained by the conversion of the drug particles from a crystal to amorphous state by grinding with water-soluble polymers and that a reduction in particle size to the submicron level led to the maintenance of supersaturation due to good dispersion.  相似文献   

13.
The dissolution of phenobarbital (PB) from solid dispersion with phosphatidylcholine (PC) was studied. PB was present in an amorphous state in solid dispersion (PB-PC) if the mole fraction of PB was under 0.75. Thus, supersaturation was observed when an excess amount of PB-PC was dispersed in pH 1.2 and 6.8 media. The degree of supersaturation was largest when the mole fraction of PB was 0.25, although it was only 1.3-fold of the PB solubility in this case. Dissolution from PB-PC was rapid and complete in both pH 1.2 and 6.8 media regardless of the mole fraction of PB, above 90% within 5 min. Bioavailability after the oral administration of PB-PC to rabbits with a dose of 15 mg/kg equivalent to PB was compared with that of PB crystals. The area under the plasma concentration curve was bigger, but not significant. The maximum concentration was significantly higher, and the time to maximum concentration was significantly faster. These results indicate that the absorption rate became high with PB-PC because the dissolution was rapid.  相似文献   

14.
微波加热法快速合成T型分子筛   总被引:4,自引:0,他引:4  
由于具有高的水热稳定性和优良的孔道结构.T型分子筛已成为一种高选择性的催化剂.在低碳化合物的催化和重整等方面有较多的应用。近年来.报道采用晶种法在无机多孔陶瓷支撑体上制备的T型分子筛膜.在脱除有机物/水混合物中的水时.表现出优异的渗透汽化分离性能。然而,提高T型分子筛膜的致密性和生长速率仍是亟待解决的问题。T型分子筛的合成研究较少.制备过程均采用普通加热(Conventional Heating.CH)法。在无模板剂的条件下.T型分子筛的结晶区间较窄,结晶速率慢.合成时间通常需要6d以上。  相似文献   

15.
The objective of present work was to enhance the solubility and bioavailability of poorly aqueous soluble drug Irbesartan (IBS). The solid dispersions were prepared by spray drying method using low viscosity grade HPMC E5LV. Prepared solid dispersions were characterized by dissolution study, fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and X-ray diffraction studies (XRD). Results of the SEM, DSC and XRD study showed the conversion of crystalline form of IBS to amorphous form. The dissolution rate was remarkably increased in case of solid dispersion compared to pure IBS. Solubility and stability of solid dispersion was increased due to surfactant and wetting property, slowing devitrification and having anti-plasticization effect of HPMC E5LV. In vivo studies were performed in healthy rabbits (New Zealand grey) and compared with plain IBS. Solid dispersions showed increase in relative bioavailability than the plain IBS suspension. In conclusion, the prepared solid dispersions showed remarkable increase in solubility, dissolution rate and hence bioavailability of poorly water soluble drug Irbesartan.  相似文献   

16.
An attempt has been made to enhance solubility and dissolution of sirolimus by solid dispersion and complexation technique using various hydrophilic excipients. Sirolimus an immunosuppressant agent has low bioavailability due to its low aqueous solubility. Solid dispersion of sirolimus in PEG-6000, Poloxamer-188, and Mannitol were prepared by fusion and solvent evaporation method. Beta-CD complexation of sirolimus was prepared by kneading method. In vitro dissolution studies were carried out in 0.4% SLS in water, which showed that the solid dispersion containing PEG 6000 (1:1), which was prepared by solvent evaporation method, showed faster dissolution rate than the other formulations and β-cyclodextrin complex. Solid dispersions containing PEG 6000 was further investigated by x-ray powder diffraction, differential scanning calorimetry (DSC), and FTIR. X-ray powder diffraction and DSC patterns suggested that the drug state changed from crystalline to amorphous form in the formulation.  相似文献   

17.
The infrared absorption band of decoupled OD stretching vibration (4 mol% HOD in 20-monolayer H 2O) of amorphous solid water is red-shifted and sharpened at around 160 K because of spontaneous nucleation. The crystal grows in a fluidized liquid that forms droplets on a Ni(111) substrate. The shape change and red-shift of a coupled OH band during crystallization are elucidated by a Mie particle scattering model, indicating that nanometer-size droplets are formed preferentially. The spontaneous nucleation at 160 K is bypassed when amorphous solid water is deposited on a crystallized water film; the crystals grow around nuclei at ca. 150 K, resulting in larger crystal grains that do not cause Mie scattering. However, the crystal grains behave like viscous droplets because their morphology changes continuously after the completion of crystallization. The coexisting liquid-like water is indistinguishable from cubic ice in local structure. This behavior resembles that of a quasiliquid formed during premelting.  相似文献   

18.
An amorphous solid (glass) may crystallize faster at the surface than through the bulk, making surface crystallization a mechanism of failure for amorphous pharmaceuticals and other materials. An ultrathin coating of gold or polyelectrolytes inhibited the surface crystallization of amorphous indomethacin (IMC), an anti-inflammatory drug and model organic glass. The gold coating (10 nm) was deposited by sputtering, and the polyelectrolyte coating (3-20 nm) was deposited by an electrostatic layer-by-layer assembly of cationic poly(dimethyldiallyl ammonium chloride) (PDDA) and anionic sodium poly(styrenesulfonate) (PSS) in aqueous solution. The coating also inhibited the growth of existing crystals. The inhibition was strong even with one layer of PDDA. The polyelectrolyte coating still permitted fast dissolution of amorphous IMC and improved its wetting and flow. The finding supports the view that the surface crystallization of amorphous IMC is enabled by the mobility of a thin layer of surface molecules, and this mobility can be suppressed by a coating of only a few nanometers. This technique may be used to stabilize amorphous drugs prone to surface crystallization, with the aqueous coating process especially suitable for drugs of low aqueous solubility.  相似文献   

19.
The polymorphic forms and amorphous form of TA-270 (4-hydroxy-1-methyl-3-octyloxy-7-sinapinoylamino-2(1H)-quinolinone), a newly developed antiallergenic compound, were characterized by powder X-ray diffractometry, thermal analysis, infrared spectroscopy and solid state 13C-NMR. The intrinsic dissolution rates of polymorphic forms were measured using the rotating disk method at 37 degrees C. The dissolution rates correlated well with the thermodynamic stability of each polymorphic form. These dissolution properties were clearly reflected in the oral bioavailability of TA-270 in rats. The transition behavior for each polymorph and for the amorphous form was studied under the high temperature and humidity conditions. The beta- and delta-forms were transformed into the alpha-form by heating. The amorphous form was also easily crystallized into alpha-form by heating, however it was relatively stable under humidified conditions. The internal molecular packing of each polymorph was estimated from IR and solid state NMR spectral analysis.  相似文献   

20.
钠硼解石——水体系溶解和相平衡的研究(英)   总被引:3,自引:0,他引:3  
Ulexite dissolution in water has been studied in the wide temperature range from 10℃ to 93℃ and two higher temperatures at 120 ℃ and 240 ℃. The analytical results showed that ulexite dissolved congruently from 10 ℃ to 35 ℃ and incongruently from 40 to 68 ℃. The solid component of ulexite, NaCaB5O6(OH)6·5H2O was dehydrated to form NaCaB5O6(OH)6·H2O from 50 to 68 ℃ and finally amorphous solid at 68 ℃. This amorphous solid converted into priceite at 71 ℃ and then converted completely to priceite at the boiling point(93℃) of the solution. At both 120 and 240 ℃, the dissolution of ulexite was an incongruent process. Above 120 ℃, ulexite became amorphous solid and then transformed into priceite. In addition to the solid to solid transformation, crystallization of priceite from the solution has also been observed. Based on our experimental results, mechanisms of dissolution, transformation, and crystallization of borate in ulexite-water system are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号