首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solution synthesis of germanium nanowires using a Ge2+ alkoxide precursor   总被引:1,自引:0,他引:1  
A simple solution synthesis of germanium (Ge0) nanowires under mild conditions (<400 degrees C and 1 atm) was demonstrated using germanium 2,6-dibutylphenoxide, Ge(DBP)2 (1), as the precursor where DBP = 2,6-OC6H3(C(CH3)3)2. Compound 1, synthesized from Ge(NR2)2 where R = SiMe3 and 2 equiv of DBP-H, was characterized as a mononuclear species by single-crystal X-ray diffraction. Dissolution of 1 in oleylamine, followed by rapid injection into a 1-octadecene solution heated to 300 degrees C under an atmosphere of Ar, led to the formation of Ge0 nanowires. The Ge0 nanowires were characterized by transmission electron microscopy (TEM), X-ray diffraction analysis, and Fourier transform infrared spectroscopy. These characterizations revealed that the nanowires are single crystalline in the cubic phase and coated with oleylamine surfactant. We also observed that the nanowire length (0.1-10 microm) increases with increasing temperature (285-315 degrees C) and time (5-60 min). Two growth mechanisms are proposed based on the TEM images intermittently taken during the growth process as a function of time: (1) self-seeding mechanism where one of two overlapping nanowires serves as a seed, while the other continues to grow as a wire; and (2) self-assembly mechanism where an aggregate of small rods (<50 nm in diameter) recrystallizes on the tip of a longer wire, extending its length.  相似文献   

2.
Taper- and rodlike Si nanowires (SiNWs) are synthesized successfully on Si and Si(0.8)Ge(0.2) substrates. The growth mechanisms of taper- and rodlike SiNWs are proposed to be oxide-assisted growth (OAG) and vapor-liquid-solid (VLS) growth, respectively. For taperlike SiNWs annealed at 1200 degrees C for 3 h, the emission peaks are found at 772, 478, and 413 nm. On the other hand, for rodlike SiNWs annealed at 1200 degrees C for 4 h, emission peaks are found at 783, 516, and 413 nm. From the field-emission measurements, the taperlike Si nanowires exhibit superior field-emission behavior with a turn-on field of 6.3-7.3 V/mum. The field enhancement, beta, has been estimated to be 700 and 1000 at low and high fields, respectively. The excellent field-emission characteristics are attributed to the perfect crystalline structure and the taperlike geometry of the Si nanowires.  相似文献   

3.
The temperature dependence of the field effect mobility was measured for solution-grown single-crystal Ge nanowires. The nanowires were synthesized in hexane from diphenylgermane by the supercritical fluid-liquid-solid process using gold nanocrystals as seeds. The nanowires were chemically treated with isoprene to passivate their surfaces. The electrical properties of individual nanowires were then measured by depositing them on a Si substrate, followed by electrical connection with Pt wires using focused ion beam assisted chemical vapor deposition. The nanowires were positioned over TaN or Au electrodes covered with ZrO2 dielectric that were used as gates to apply external potentials to modulate the conductance. Negative gate potentials increased the Ge nanowire conductance, characteristic of a p-type semiconductor. The temperature-dependent source/drain current-voltage measurements under applied gate potential revealed that the field effect mobility increased with increasing temperature, indicating that the carrier mobility through the nanowire is probably dominated either by a hopping mechanism or by trapped charges in fast surface states.  相似文献   

4.
A simple method is developed to synthesize gram quantities of uniform Ge nanowires (GeNWs) by chemical vapor deposition on preformed, monodispersed seed particles loaded onto a high surface area silica support. Various chemical functionalization schemes are investigated to passivate the GeNW surfaces using alkanethiols and alkyl Grignard reactions. The stability of functionalization against oxidation of germanium for various alkyl chain lengths is elucidated by X-ray photoelectron spectroscopy. Among all schemes tested, long chain alkanethiols (> or = C12) are found to impart the most stable GeNW passivation against oxidation upon extended exposure to ambient air. Further, the chemically functionalized oxidation-resistant nanowires are soluble in organic solvents and can be readily assembled into close-packed Langmuir-Blodgett films potentially useful for future high performance electronic devices.  相似文献   

5.
In this paper we report for the first time on the room temperature template synthesis of germanium and silicon nanowires by potentiostatic electrochemical deposition from the air- and water stable ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide ([Py(1,4)]Tf(2)N) containing GeCl(4) and SiCl(4) as a Ge and Si source, respectively. Commercially-available track-etched polycarbonate membranes (PC) with an average nominal pore diameter of 90-400 nm were used as templates. Ge and Si nanowires with an average diameter corresponding to the nanopores' diameter and lengths of a few micrometres were reproducibly obtained. Structural characterization of the nanowires was performed by EDX, TEM, HR-SEM and Raman spectroscopy. Despite the rough surface of the nanowires, governed mostly by the original shape of the nanopore's wall of the commercially-available PC membrane, preliminary structural characterizations demonstrate the promising prospective of this innovative elaboration process compared to constraining high vacuum and high temperature methods.  相似文献   

6.
Chemical surface passivation of Ge nanowires   总被引:4,自引:0,他引:4  
Surface oxidation and chemical passivation of single-crystal Ge nanowires with diameters ranging between 7 and 25 nm were studied. The surface chemistry differs significantly from that of well-studied monolithic atomically smooth single-crystal substrates. High-resolution Ge 3d XPS measurements reveal that Ge nanowires with chemically untreated surfaces exhibit greater susceptibility to oxidation than monolithic Ge substrates. Multiple solution-phase routes to Ge nanowire surface passivation were studied, including sulfidation, hydride and chloride termination, and organic monolayer passivation. Etching in HCl results in chloride-terminated surfaces, whereas HF etching leads to hydride termination with limited stability. Exposure to aqueous ammonium sulfide solutions leads to a thick glassy germanium sulfide layer. Thermally initiated hydrogermylation reactions with alkenes produce chemically stable, covalently bonded organic monolayer coatings that enable ohmic electrical contacts to be made to the nanowires.  相似文献   

7.
Single-crystal iron silicon boron (Fe(5)Si(2)B) and iron boride (Fe(3)B) nanowires were synthesized by a chemical vapor deposition (CVD) method on either silicon dioxide (SiO(2)) on silicon (Si) or Si substrates without introducing any catalysts. FeI(2) and BI(3) were used as precursors. The typical size of the nanowires is about 5-50 nm in width and 1-20 mum in length. Different kinds of Fe-Si-B and Fe-B structures were synthesized by adjusting the ratio of FeI(2) vapor to BI(3) vapor. Single-crystal Fe(5)Si(2)B nanowires formed when the FeI(2) sublimator temperature was kept in the range of 540-570 degrees C. If the FeI(2) sublimator temperature was adjusted in the range of 430-470 degrees C, single-crystal Fe(3)B nanowires were produced. Fe(3)B nanowires grow from polycrystalline Fe(5)SiB(2) particles, while Fe(5)Si(2)B nanowires grow out of the Fe(5)Si(2)B layers, which are attached to triangle shaped FeSi particles. Both the ratio of FeI(2) vapor to BI(3) vapor and the formation of the particles (Fe(5)SiB(2) particles for the growth of Fe(3)B nanowires, FeSi particles for the growth of Fe(5)Si(2)B nanowires) are critical for the growth of Fe(3)B and Fe(5)Si(2)B nanowires. The correct FeI(2) vapor to BI(3) vapor ratio assures the desired phase form, while the particles provide preferential sites for adsorption and nucleation of Fe(3)B or Fe(5)Si(2)B molecules. Fe(3)B or Fe(5)Si(2)B nanowires grow due to the preferred growth direction of <110>.  相似文献   

8.
Germanium nanowires (GeNWs) with p- and n-dopants were synthesized by chemical vapor deposition (CVD) and were used to construct complementary field-effect transistors (FETs). Electrical transport and X-ray photoelectron spectroscopy (XPS) data are correlated to glean the effects of Ge surface chemistry to the electrical characteristics of GeNWs. Large hysteresis due to water molecules strongly bound to GeO(2) on GeNWs is revealed. Different oxidation behavior and hysteresis characteristics and opposite band bending due to Fermi level pinning by interface states between Ge and surface oxides are observed for p- and n-type GeNWs. Vacuum annealing above 400 degrees C is used to remove surface oxides and eliminate hysteresis in GeNW FETs. High-kappa dielectric HfO(2) films grown on clean GeNW surfaces by atomic layer deposition (ALD) using an alkylamide precursor is effective in serving as the first layer of surface passivation. Lastly, the depletion length along the radial direction of nanowires is evaluated. The result suggests that surface effects could be dominant over the "bulk" properties of small diameter wires.  相似文献   

9.
Large-quantity single-crystal SnO(2) nanowires coated with quantum-sized ZnO nanocrystals (nc-ZnO/SnO(2) nanowires) were directly synthesized by thermal evaporation of SnO powder and a mixture of basic ZnCO(3) and graphite powders. A common stainless steel mesh was used to collect the products. The microstructure and possible growth mechanism of the nc-ZnO/SnO(2) nanowires were investigated. Results showed that tetragonal structured SnO(2) nanowires were obtained, whose surfaces were coated with single-layer ZnO nanocrystals with an average diameter of less than 5 nm. The nanowires had cross-rectangle section with width-to-thickness aspect ratio ranging from 2:1 to 5:1. The lengths of the nanowires were several tens of micrometers. ZnO nanocrystals were single crystalline wurtzite structures, which coated the whole nanowires and distributed uniformly. The possible growth mechanism of the composite nanowires may be enucleated that Zn atoms in the source vapor will replace the Sn atoms on the surface of the formed SnO(2) nanowires due to the higher reducibility of Zn than Sn. Two strong Raman scattering peaks at 626 and 656 cm(-1) appeared in the micro-Raman spectrum of nc-ZnO/SnO(2) nanowires. The origins of the peaks were discussed. Most importantly, the method can be extended to other composite oxide nanowires that are synthesized by oxidizing two kinds of metals, such as high reducibility elements Mg, Al, Zn, and Ti, and low reducibility elements In, Ge, Ga, etc.  相似文献   

10.
The geometry,stability,binding energy and electronic properties of(SiO2)n and Ge(SiO2)n clusters(n = 7) have been investigated by Density functional theory(DFT).The results show that the lowest energy structures of Ge(SiO2)n are obtained by adding one Ge on the end site of the O atom or the Si near end site of the O atom in(SiO2)n.The chemical activation of Ge-(SiO2)n is improved compared with(SiO2)n.The calculated second-order difference of energies and fragmentation energies show that the Ge(SiO2)n clusters with n = 2 or 5 are stable.  相似文献   

11.
The gas phase ion-molecule reactions in positively and negatively ionized germane/diborane mixtures have been studied by ion trap mass spectrometry. Reaction sequences and rate constants for the most interesting processes have been determined. In positive ionization, formation of Ge-B bonds exclusively occurs through condensation reactions of B(n)H(m)(+) ions with germane, followed by H(2) or BH(3) loss. No reactions of ions from germane with B(2)H(6) were observed under the experimental conditions used here. In negative ionization, the Ge(n)H(m)(-) (n = 1, 2) ion families react with diborane to yield the Ge(n)B(p)H(q)(-) (p = 1, 2) ions, again via dehydrogenation and BH(3) loss, while diborane anions proved to be unreactive. In both positive and negative ionization, Ge-B ions reach appreciable abundances. The present results afford fundamental information about the intrinsic reactivity of gas-phase ions and provide valuable indications about the first nucleation steps ultimately leading to amorphous Ge and B-doped semiconductor materials by chemical vapor deposition methods.  相似文献   

12.
《Chemical physics letters》2002,350(3-4):220-223
Polycrystalline Cu(OH)2 nanowires with an average diameter of ca. 8 nm and lengths of up to hundreds of micrometers were synthesized by using a simple chemical route at ambient temperature. The crystallity, purity, morphology, and structure features of the as-prepared Cu(OH)2 nanowires were investigated by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). The growth mechanism of the Cu(OH)2 nanowires were studied in detail.  相似文献   

13.
The ground-state structures of silica clusters (SiO2)n for n = 1-8 were studied by performing calculations at the B3LYP/6-311+G(d) level of density functional theory. The results indicate that the growth mode of a silica nanowire based on small silica clusters may change at different wire lengths. A linear chain might be assembled from the smallest clusters of rhombic two-membered ring (2MR) with n < or = 5, while the growth motif changes at n = 6 into a more compact form composed of three-membered-rings (3MRs). The 3MR-containing structures become energetically favorable configurations for even longer silica clusters. In particular, the closed molecular ring consisting of 3MRs at n = 8 (i.e., (SiO2)8) with a high symmetry shows extreme energetic stability and relatively high chemical reactivity and thus is considered to be an important building block to assemble into silica nanowires. The relative stability of so-assembled silica nanowires were evaluated and compared with the models of silica nanowires in the literature.  相似文献   

14.
The reaction of GeBr with LiSi(SiMe(3))(3) leads to the metalloid cluster compound [(THF)(2)Li](3)Ge(14)[Si(SiMe(3))(3)](5) (1). After the introduction of a first cluster of this type, in which 14 germanium atoms form an empty polyhedron, [(THF)(2)Li](3)Ge(14)[Ge(SiMe(3))(3)](5) (2), we present here further investigations on 1 to obtain preliminary insight into its chemical and bonding properties. The molecular structure of 1 is determined via X-ray crystal structure solution using synchrotron radiation. The electronic structure of the Ge(14) polyhedron is further examined by quantum chemical calculations, which indicate that three singlet biradicaloid entities formally combine to yield the singlet hexaradicaloid character of 1. Moreover, the initial reactions of 1 after elimination of the [Li(THF)(2)](+) groups by chelating ligands (e.g., TMEDA or 12-crown-4) are presented. Collision induced dissociation experiments in the gas phase, employing FT-ICR mass spectrometry, lead to the elimination of the singlet biradicaloid Ge(5)H(2)[Si(SiMe(3))(3)](2) cluster. The unique multiradicaloid bonding character of the metalloid cluster 1 might be used as a model for reactions and properties in the field of surface science and nanotechnology.  相似文献   

15.
Cu(OH)_2 nanowires were prepared and incorporated into poly(vinylidene fluoride)(PVDF) to fabricate Cu(OH)_2-PVDF ultrafiltration(UF) membrane via immersion precipitation phase inversion process. The effect of Cu(OH)_2 nanowires on the morphology of membranes was investigated by X-ray photoelectron spectroscopy(XPS), Fourier transform infrared(FTIR) spectroscopy, atomic force microscopy(AFM), scanning electron microscopy(SEM) and X-ray diffraction(XRD) measurements. The results showed that all the Cu(OH)_2-PVDF membranes had wider fingerlike pore structure and better hydrophilicity, smoother surface than pristine PVDF membrane due to the incorporation of Cu(OH)_2 nanowires. In addition, water flux and bovine serum albumin(BSA) rejection were also measured to investigate the filtration performance of membranes. The results indicated that all the Cu(OH)_2-PVDF membranes had high water flux, outstanding BSA rejection and excellent antifouling properties. It is worth mentioning that the optimized performance could be obtained when the Cu(OH)_2 nanowires content reached 1.2 wt%. Furthermore, the membrane with 1.2 wt% Cu(OH)_2 nanowires showed outstanding oil-water emulsion separation capability.  相似文献   

16.
High yields of single-crystalline Ge nanowires (NWs) were synthesised in the vapour phase of a high boiling point organic solvent without the need for metal catalyst particles. High density, perpendicular arrays of Ge NWs were subsequently grown from ITO coated substrates. The approach represents a convenient route toward orientated arrays of catalyst-free Ge NWs.  相似文献   

17.
Ge2Sb2Te5 nanowires (NWs) were synthesized by vaporizing GeTe, Sb, and Te precursors assisted by metal catalysts. Current-voltage measurement of the Ge2Sb2Te5 NW device displays fast and reversible switching between two distinct resistive states, which is due to the crystalline-amorphous phase transition nature of these materials  相似文献   

18.
19.
Treatment of GeCl2(dioxane) with Li2(TPP)(OEt2)2 (TPP = tetraphenylporphyrin) in THF yields Ge(TPP), the first free Ge(II) porphyrin complex. In pyridine Ge(TPP) is converted to Ge(TPP)(py)2, an antiaromatic Ge(IV) complex, whereas in benzene the reaction is reversed, and pyridine dissociates from Ge(TPP)(py)2 to form Ge(TPP). That reversible reaction represents an unusual, if not unique, example of an oxidation-state change in a metal induced by coordination of a dative ligand. UV-vis and 1H NMR spectroscopy show that Ge(TPP) is an aromatic Ge(II) porphyrin complex, while the 1H NMR spectrum of Ge(TPP)(py)2 clearly indicates the presence of a strong paratropic ring current, characteristic of an antiaromatic compound. Both Ge(TPP) and Ge(TPP)(py)2 have been crystallographically characterized, and the antiaromaticity of Ge(TPP)(py)2 leads to alternating short and long C-C bonds along the 20-carbon periphery of its porphine ring system. Coordination of pyridine to Ge(TPP) greatly increases its reducing ability: the Ge(TPP)0/2+ redox potential is about +0.2 V, while the Ge(TPP)(py)2(0/+) redox potential is -1.24 V (both vs. ferrocene). The equilibrium constant of the reaction Ge(TPP) + 2 py = Ge(TPP)(py)2 in C6D6 is 22 M-2. The germanium complex of the more electron-withdrawing tetrakis[3,5-bis(trifluoromethyl)phenyl]porphyrin, Ge(TArFP), and its pyridine adduct Ge(TArFP)(py)2 were synthesized. The equilibrium constant of the reaction Ge(TArFP) + 2 py = Ge(TArFP)(py)2 in C6F6/C6D6 is 2.3 x 10(4) M-2. Density functional theory calculations are consistent with the experimental observation that M(TPP)(py)2 formation from M(TPP) and pyridine is most favorable for M=Si, borderline for Ge, and unfavorable for Sn.  相似文献   

20.
The group 14 clusters encapsulated by coinage metals in neutral and anionic states X(10)M(0/-) (X = Ge, Sn, Pb and M = Cu, Ag, Au) are investigated using quantum chemical calculations with the DFT/B3LYP functional and coupled-cluster CCSD(T) theory. Addition of transition metals into the empty cages forms high symmetry endohedral structures, except for Ge(10)Ag(0/-). In agreement with experiments available for X(10)Cu, the D(4d) global minima of the anions are calculated to be magic clusters with large frontier orbital gaps, high vertical and adiabatic detachment energies, and large embedding energies and binding energies as compared to those of the empty cages X(10)(2-). The enhanced stability of these magic clusters can be rationalized by the three-dimensional aromaticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号