首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sorek  S.  Levy  A.  Ben-dor  G.  Smeulders  D. 《Transport in Porous Media》1999,34(1-3):63-100
Macroscopic balance equations of mass, momentum and energy for compressible Newtonian fluids within a thermoelastic solid matrix are developed as the theoretical basis for wave motion in multiphase deformable porous media. This leads to the rigorous development of the extended Forchheimer terms accounting for the momentum exchange between the phases through the solid-fluid interfaces. An additional relation presenting the deviation (assumed of a lower order of magnitude) from the macroscopic momentum balance equation, is also presented. Nondimensional investigation of the phases' macroscopic balance equations, yield four evolution periods associated with different dominant balance equations which are obtained following an abrupt change in fluid's pressure and temperature. During the second evolution period, the inertial terms are dominant. As a result the momentum balance equations reduce to nonlinear wave equations. Various analytical solutions of these equations are described for the 1-D case. Comparison with literature and verification with shock tube experiments, serve as validation of the developed theory and the computer code.A 1-D TVD-based numerical study of shock wave propagation in saturated porous media, is presented. A parametric investigation using the developed computer code is also given.  相似文献   

2.
3.
Magyari  E.  Keller  B. 《Transport in Porous Media》2004,55(3):285-300
The well known steady free convection forward boundary layer (FBL) flows ascending over a heated upwards projecting semi-infinite flat plate embedded in a fluid saturated porous medium are compared in this paper to their less well known backward (BBL) counterparts descending over a cooled (also upwards projecting!) semi-infinite flat plate. The circumstance that the definite edge of the plate (x = 0) in the former case is a leading edge and in the latter one a trailing edge, leads to substantially different mathematical and physical features of the FBL and BBL flows, respectively. The paper considers under this aspect the case of similar flows corresponding to surface temperature distributions which are power-law functions of the distance x from the definite edge. For permeable plates the effect of an adequate lateral suction and injection of the fluid is also taken into account. The detailed investigation, however, is restricted to the particular values m = +1 and m = –1/3 of the power-law exponent m, where both FBL and BBL solutions are available in exact analytic form. For each of these values, both exponentially and algebraically decaying BBL solutions were found. In addition, the existence of an exact algebraic BBL solution valid for any value of m is reported.  相似文献   

4.
Transport in Porous Media - This paper serves as a brief introduction to the longer introduction provided by the book by Nield and Bejan (NB). Attention is focussed on the modelling of the...  相似文献   

5.
Ahmadi  A.  Aigueperse  A.  Quintard  M. 《Transport in Porous Media》2001,43(2):309-353
Based on the volume averaging method, a macroscopic model is developed for the upscaling of NAPL transport in a porous medium idealised by a network model. Under the assumption of local mass non-equilibrium, a macroscopic equation involving a dispersion tensor, additional convective terms and a linear form for the interfacial mass flux is obtained. The resolution of the two local closure problems obtained allow the determination of the local properties without adjustable parmeters. These problems are solved in a semi-analytical, semi-numerical manner on the network. The originality of this work is the association of the upscaling by volume averaging method with the network approach. The local properties, including the dispersion tensor and the mass exchange coefficient, can therefore be calculated over a large number of pore-bodies and pore-throats in a computationaly tractable manner, thus leading to more significant results. Results are presented for 3D, spatially periodic models of porous media.  相似文献   

6.
Micro scale population balance equations of suspension transport in porous media with several particle capture mechanisms are derived, taking into account the particle capture by accessible pores, that were cut off the flux due to pore plugging. The main purpose of the article is to prove that the micro scale equations allow for exact upscaling (averaging) in case of filtration of mono dispersed suspensions. The averaged upper scale equations generalise the classical deep bed filtration model and its latter modifications.  相似文献   

7.
Wallstrom  T.C.  Hou  S.  Christie  M.A.  Durlofsky  L.J.  Sharp  D.H.  Zou  Q. 《Transport in Porous Media》2002,46(2-3):155-178
A new algorithm is introduced for upscaling relative permeabilities, and tested in simulations of two-dimensional reservoir displacement processes. The algorithm is similar to existing algorithms for computing upscaled relative permeabilities from subgrid simulations, but uses new boundary conditions for the pressure field. The new 'effective flux boundary conditions' were introduced in a previous paper and provide a more accurate estimate of flux through high permeability channels. The algorithm was tested in conjunction with uniform grid coarsening and upscaled absolute permeabilities for a broad range of coarsenings. The permeability fields were highly heteroge-neous and layered, and were obtained from synthetic data and from conditioned realizations of actual oil reservoirs. The algorithm was tested for a wide variety of grid aspect ratios, and for both viscous-and gravity-dominated flow. Typical fine grids were of the order of 100×100 cells; the coarsest scaled-up grids were on the order of 5×5 cells. The quality of scale up was evaluated by comparing oil cut curves for the fine and coarse grid simulations. We consistently obtained excellent agreement, even at the coarsest levels of scale up.  相似文献   

8.
9.
A laboratory experiment of transient thermal convection in a 1-m-high cell was conducted to compare the length and time scales of plume development to theory. The temperature field was resolved to less than 1 mm and was measured by dissolving a solution of thermochromic crystals into the water–glycerin working fluid. The time-dependent experiment was run by applying heat at the bottom boundary that eventually was \(6\,^\circ \) C above the background temperature of the fluid. After development of a thermal boundary layer, the instability became visible at 26 min, with the development of 11, 3–4 cm width plumes growing from the boundary layer. The initially rapid growth rate reached a limiting velocity of approximately 0.5 cm min \(^{-1}\) , and then decelerated throughout the experiment. Plumes interacted primarily by merging together; by the end of the experiment only three plumes were present. The Nusselt number at the onset of convection was 10, although it dropped to 4 after 45 min, which would be expected of a barely unstable system.  相似文献   

10.
A regular two-parameter perturbation analysis based upon the boundary layer approximation is presented here to study the radiative effects of both first- and second-order resistances due to a solid matrix on the natural convection flows in porous media. Four different flows have been studied, those adjacent to an isothermal surface, a uniform heat flux surface, a plane plume and the flow generated from a horizontal line energy source on a vertical adiabatic surface. The first-order perturbation quantities are presented for all these flows. Numerical results for the four conditions with various radiation parameters are tabulated.  相似文献   

11.
渗流方程自适应非均匀网格Dagan粗化算法   总被引:4,自引:0,他引:4  
在粗网格内先统计渗透率在粗网格中的概率分布,利用Dagan渗透率粗化积分方程通过渗透率概率分布计算粗化网格的等效渗透率,并由等效渗透率计算了粗化网格的压强分布,计算压强时还将渗透率自适应网格技术应用于三维渗流方程的网格粗化算法中,在渗透率或孔隙度变化异常区域自动采用精细网格,用直接解法求解渗透率或孔隙度变化异常区域的压强分布。整个求解区采用不均匀网格粗化,在流体流速高的区域采用精细网格。利用本文方法计算了三维渗流方程的压强分布,结果表明这种算法的解在渗透率或孔隙度异常区的压强分布规律非常逼近精细网格的解,在其他区域压强分布规律非常逼近粗化算法的解,计算速度比采用精细网格提高了约100倍。  相似文献   

12.
In this paper we investigate the combined free and forced convection of a fully developed Newtonian fluid within a vertical channel composed of porous media when viscous dissipation effects are taken into consideration. The flow is analysed in the region of a first critical Rayleigh number in order to interpret the multiple-valued solutions and discuss their validity. The governing fourth-order, ordinary differential equation, which contains the Darcy and the viscous dissipation terms, is solved analytically using perturbation techniques and numerically using D02HBF NAG Library. A detailed investigation of the governing O.D.E. is performed on both clear fluid and porous medium for various values of the viscous dissipation parameter, , when the wall temperature decreases linearly with height, and the pressure gradient is both above and below its hydrostatic value. Although mathematically the results in all cases show that there are two solution branches, producing four possible solutions, the study of the velocity and buoyancy profiles together with the Darcy effect indicate that only one of the two solutions at any value of the Rayleigh number appears to be physically acceptable. It is shown that the effect of the Darcy number decreases as the critical Rayleigh numbers increase.  相似文献   

13.
A method of using feedback control to promote or suppress the transition to chaos in porous media convection is demonstrated in this article. A feedback control suggested by Mahmud and Hashim (Transp Porous Media, doi:10.1007/s11242-009-9511-1, 2010) is used in the present article to provide a comparison between an analytical expression for the transition point to chaos and numerical results. In addition, it is shown that such a feedback control can be applied as an excellent practical means for controlling (suppressing or promoting) chaos by using a transformation made by Magyari (Transp Porous Media, doi:10.1007/s11242-009-9511-1, 2010). The latter shows that Mahmud and Hashim (Transp Porous Media, doi:10.1007/s11242-009-9511-1, 2010) model can be transformed into Vadasz-Olek’s model (Transp Porous Media 37(1):69–91, 1999a) through a simple transformation of variables implying that the main effect the feedback control has on the solution is equivalent to altering the initial conditions. The theoretical and practical significance of such an equivalent alteration of the initial conditions is presented and discussed.  相似文献   

14.
We revisit the problem of thermal convection in a bidispersive porous medium, first addressed by Nield and Kuznetsov (Int. J. Heat Mass Transfer, 49: 3068–3074, 2006). We investigate the possibility of oscillatory convection by using a highly accurate Chebyshev tau numerical method. We also develop a nonlinear energy stability theory for the same problem. This yields a global stability threshold below which instabilities cannot arise. These thresholds together with the linear instability boundaries yield a zone where thermal instability may be found. The results and theory of Nield and Kuznetsov (Int. J. Heat Mass Transfer, 49: 3068–3074, 2006) are thus proven to be a highly important development in the modern theory of designer porous materials, cf. Nield and Bejan (Convection in Porous Media, Springer, New York, 2006), pp. 94–97. This work was supported in part by a Research Project Grant of the Leverhulme Trust—Grant Number F/00128/AK.  相似文献   

15.
A Two-Equation Analysis of Convection Heat Transfer in Porous Media   总被引:2,自引:0,他引:2  
This paper presents a two-equation analysis on the convection heat transfer in porous media based on the modeling developed by Carbonell and Whitaker (1984). The porous system under consideration is bounded by two parallel walls and heated uniformly from one side surface. The Darcy flow is imposed and the fully developed heat transfer is assumed. General solutions, which take into account the additional convective and conductive terms, are obtained for the temperature fields and the Nusselt number. The detailed studies are presented for the porous systems characterized by consolidated and unconsolidated circular unit cells. The results show that, for the consolidated unit cell case, a prediction without the additional convective term overestimates the heat transfer, while for the unconsolidated unit cell case, this effect is negligible. The additional conductive terms are also examined and found to act conventionally as part of the conductive terms.  相似文献   

16.

Charged porous media are pervasive, and modeling such systems is mathematically and computationally challenging due to the highly coupled hydrodynamic and electrochemical interactions caused by the presence of charged solid surfaces, ions in the fluid, and chemical reactions between the ions in the fluid and the solid surface. In addition to the microscopic physics, applied external potentials, such as hydrodynamic, electrical, and chemical potential gradients, control the macroscopic dynamics of the system. This paper aims to give fresh overview of modeling pore-scale and Darcy-scale coupled processes for different applications. At the microscale, fundamental microscopic concepts and corresponding mass and momentum balance equations for charged porous media are presented. Given the highly coupled nonlinear physiochemical processes in charged porous media as well as the huge discrepancy in length scales of these physiochemical phenomena versus the application, numerical simulation of these processes at the Darcy scale is even more challenging than the direct pore-scale simulation of multiphase flow in porous media. Thus, upscaling the microscopic processes up to the Darcy scale is essential and highly required for large-scale applications. Hence, we provide and discuss Darcy-scale porous medium theories obtained using the hybrid mixture theory and homogenization along with their corresponding assumptions. Then, application of these theoretical developments in clays, batteries, enhanced oil recovery, and biological systems is discussed.

  相似文献   

17.
The impact of thermal expansion and the corresponding non-Boussinesq effects on porous media convection are considered. The results show that the non-Boussinesq effects decouple from the rest, and solving the Boussinesq system separately is needed even when non-Boussinesq effects are being investigated. The thermal expansion is shown to have a lasting impact on the post-transient convection only for values of Rayleigh number substantially beyond the convection threshold, where the amplitude of convection is not small. In the neighbourhood of the convection threshold the thermal expansion has only a transient impact on the solution. It is also evident from the results that the neglect of the time derivative term in the extended Darcy equation might introduce a significant error when oscillatory effects are present.  相似文献   

18.
19.
Based on the traditional formulation of heat transfer in porous media it is demonstrated that Local Thermal Equilibrium (Lotheq) applies generally for any boundary conditions that are a combination of constant temperature and insulation. The resulting consequences are being analysed and discussed. Among these consequences it is shown that the linear relationship between the average temperature difference of the two phases and the heat transferred over the fluid-solid interface is inappropriate for use in connection with conditions of Lack of Local Thermal Equilibrium (La Lotheq).  相似文献   

20.
We examine the effect of viscous forces on the displacement of one fluid by a second, immiscible fluid along parallel layers of contrasting porosity, absolute permeability and relative permeability. Flow is characterized using five dimensionless numbers and the dimensionless storage efficiency, so results are directly applicable, regardless of scale, to geologic carbon storage. The storage efficiency is numerically equivalent to the recovery efficiency, applicable to hydrocarbon production. We quantify the shock-front velocities at the leading edge of the displacing phase using asymptotic flow solutions obtained in the limits of no crossflow and equilibrium crossflow. The shock-front velocities can be used to identify a fast layer and a slow layer, although in some cases the shock-front velocities are identical even though the layers have contrasting properties. Three crossflow regimes are identified and defined with respect to the fast and slow shock-front mobility ratios, using both theoretical predictions and confirmation from numerical flow simulations. Previous studies have identified only two crossflow regimes. Contrasts in porosity and relative permeability exert a significant influence on contrasts in the shock-front velocities and on storage efficiency, in addition to previously examined contrasts in absolute permeability. Previous studies concluded that the maximum storage efficiency is obtained for unit permeability ratio; this is true only if there are no contrasts in porosity and relative permeability. The impact of crossflow on storage efficiency depends on the mobility ratio evaluated across the fast shock-front and on the time at which the efficiency is measured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号