首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this paper is to prove the transcendence of certain infinite products. As applications, we get necessary and sufficient conditions for transcendence of the value of $\Pi_{k=0}^{\infty}(1+a_{k}^{(1)}{z_{1}r^{k}}+\cdot\cdot\cdot+a_{k}^{(m)}{z_{m}r^{k}})$ at appropriate algebraic points, where r ≥ 2 is an integer and {an (i)}n≥ 0 (1 ≤ im) are suitable sequences of algebraic numbers.  相似文献   

2.
Последовательность {itak} (n) k =1/∞ вещественных ч исел называется дважды мо нотонной, еслиa k -2a k+1 +a k+2 ≧0 дляk≧1. В работе доказываютс я следующие утвержде ния, являющиеся обобщени ем двух теорем Фейера:
  1. Если {itak — дважды моно тонная последовател ьность, то для ¦z¦<1 $$\operatorname{Re} \sum\limits_{\kappa = 1}^\infty {a_\kappa z^\kappa } /\sum\limits_{\kappa = 1}^n {a_\kappa z^\kappa } > 1/2$$ дляи≧ 1.
  2. Если О≦β<1 и последова тельность (k+1-2β)ak} дважд ы монотонна, то для ¦z¦<1 $$\operatorname{Re} \sum\limits_{\kappa = 1}^\infty {ka_\kappa z^\kappa } /\sum\limits_{\kappa = 1}^\infty {a_\kappa z^\kappa } > \beta $$ , то есть $$\sum\limits_{\kappa = 1}^\infty {a_\kappa z^\kappa } \varepsilon S_\beta ^\kappa $$ . При помощи 2) получены о бобщения и уточнения теорем из работы [1] о линейных комбинациях некотор ых однолистных функц ий.
  相似文献   

3.
For k = (k1, ··· , kn) ∈ Nn, 1 ≤ k1 ≤···≤ kn, let Lkr be the family of labeled r-sets on k given by Lkr := {{(a1, la1), ··· , (ar, lar)} : {a1, ··· , ar} ■[n],lai ∈ [kai],i = 1, ··· , r}. A family A of labeled r-sets is intersecting if any two sets in A intersect. In this paper we give the sizes and structures of intersecting families of labeled r-sets.  相似文献   

4.
В работе для неотрица тельных последовате льностей (...,a ?1 i ), aa 0 i ),a 1 i ), ...), удовлетв оряющих условию \(0< \mathop {\sup }\limits_k a_k^{(i)}< \infty\) (i=1,...,т), доказ а но неравенство (1) $$\begin{gathered} \mathop \sum \limits_{k = - \infty }^\infty \mathop {\sup }\limits_{k \leqq k_1 + \ldots + k_m \leqq k + l} (a_{k_1 }^{(1)} \ldots a_{k_m }^{(m)} ) \geqq \hfill \\ \geqq \mathop \prod \limits_{i = 1}^m (\mathop {\sup }\limits_{ - \infty< k< \infty } a_k^{(i)} )\left[ {\mathop \sum \limits_{i = 1}^m \frac{{\mathop \sum \limits_{k = - \infty }^\infty (a_k^{(i)} )^{p_i } }}{{(\mathop {\sup }\limits_{ - \infty< k< \infty } a_k^{(i)} )^{p_i } }} + l - m + 1} \right], \hfill \\ \end{gathered}$$ гдеl произвольное не отрицательное целое число, 1≦p 1, ...,p m ≦∞ и \(\mathop \sum \limits_{i = 1}^m p_i^{ - 1} = 1\) . Это неравенство явля ется обобщением и уто чнением неравенств А. Прекопа, Ш. Данча и Л. Лейндлера. Доказано также, что ес ли все последователь ности содержат только коне чное число ненулевых членов, то н еобходимым условием для равенства в (1) является существование такого числа α>0, чтоa k( i )=а илиa k( i )=0 для всехi=1,...,m;?∞<k<∞.  相似文献   

5.
For $n \in \mathbb{N}$ , the n-order of an analytic function f in the unit disc D is defined by $$\sigma _{{{M,n}}} (f) = {\mathop {\lim \sup }\limits_{r \to 1^{ - } } }\frac{{\log ^{ + }_{{n + 1}} M(r,f)}} {{ - \log (1 - r)}},$$ where log+ x  =  max{log x, 0}, log + 1 x  =  log + x, log + n+1 x  =  log + log + n x, and M(r, f) is the maximum modulus of f on the circle of radius r centered at the origin. It is shown, for example, that the solutions f of the complex linear differential equation $$f^{{(k)}} + a_{{k - 1}} (z)f^{{(k - 1)}} + \cdots + a_{1} (z)f^{\prime} + a_{0} (z)f = 0,\quad \quad \quad (\dag)$$ where the coefficients are analytic in D, satisfy σ M,n+1(f)  ≤  α if and only if σ M,n (a j )  ≤  α for all j  =  0, ..., k ? 1. Moreover, if q ∈{0, ..., k ? 1} is the largest index for which $\sigma _{M,n} ( a_{q}) = {\mathop {\max }\limits_{0 \leq j \leq k - 1} }{\left\{ {\sigma _{{M,n}} {\left( {a_{j} } \right)}} \right\}}$ , then there are at least k ? q linearly independent solutions f of ( $\dag$ ) such that σ M,n+1(f) = σ M,n (a q ). Some refinements of these results in terms of the n-type of an analytic function in D are also given.  相似文献   

6.
В работе доказываетс я следующее неравенс тво. Пусть α0, α1, α2, - произво льные неотрицательн ые числа α0≠α2. Тогда, еслиx(t) люб ая функция, для которой п роизводнаяx непреры вна и функция \(x^{a_0 } (\dot x)^{a_1 } (\ddot x)^{a_2 } \) принадлежи т пространствуL [0, 1], то (*) $$\left\| x \right\|_{H^r [0,1]} \leqq c\left\| {x^{a_0 } (\dot x)^{a_1 } (\ddot x)^{a_2 } } \right\|L_{\infty [0,1]} ,$$ где ∥ · ∥H r [0,1] - норма в кл ас се функций на отрезке [0, 1], обладающих в простра нствеL [0, 1] дробной производной гельдеровского типа порядкаr=(α1+2α2)/(α012);с - конста нта, зависящая только от α0, α1, α2. Это неравенство является точным в том смысле, что показател ьr есть максимальный, п ри котором неравенст во (*) имеет место с конечной конс тантойс. При α0? появляются логарифмические доб авки. Хорошо известно, что д ля непрерывной на [0, 1] фу нкции частные суммы Фурье п о тригонометрической системе равномерно с уммируются к ней методом (С, 1). И. Пра йс доказал, что для любой неограниченной последовательности целых положительных чисел {P k} k =1 и Для любогоa∈[0, 1] существует непрерыв ная на [0, 1] функция, ряд Фурье которой по ортонормированно й мультипликативной системе (OHMC) не суммируется методом (С, 1) в точкеx=a. СССР, МОСКВА 103 055 УЛ. ОБРАЗЦОВА 15 МОСКОВСКИЙ ИНСТИТУТ ИНЖЕНЕРОВ ЖЕЛЕЗНОДО РОЖНОГО ТРАНСТПОРТА  相似文献   

7.
We consider the following iterative equation $$ \sum_{i=0}^{k}a_{i}f^{i}(x)=0, $$ where a0,…, a k are given real numbers and ? is an unknown function. Assuming some conditions on the coefficients a0,…, a k we prove that this equation has exactly one solution and that the solution depends continuously on the coefficients.  相似文献   

8.
Letf(z):=Σ j=0 a j z j , where aj 0,j large enough, and for someq ε C such that ¦q¦ $$q_j : = a_{j - 1} a_{j + 1} /a_j^2 \to q,j \to \infty .$$ Define for m,n = 0,1,2,..., the Toeplitz determinant $$D(m/n): = \det (a_{m - j + k} )_{j,k = 1}^n .$$ Given ? > 0, we show that form large enough, and for everyn = 1,2,3,..., $$(1 - \varepsilon )^n \leqslant \left| {{{D(m/n)} \mathord{\left/ {\vphantom {{D(m/n)} {\left\{ {a_m^n \mathop \Pi \limits_{j - 1}^{n - 1} (1 - q_m^j )^{n - j} } \right\}}}} \right. \kern-\nulldelimiterspace} {\left\{ {a_m^n \mathop \Pi \limits_{j - 1}^{n - 1} (1 - q_m^j )^{n - j} } \right\}}}} \right| \leqslant (1 + \varepsilon )^n .$$ We apply this to show that any sequence of Padé approximants {[m k /n k ]} 1 tof, withm k →∞ ask→ ∞, converges locally uniformly in C. In particular, the diagonal sequence {[n/n]} 1 converges throughout C. Further, under additional assumptions, we give sharper asymptotics forD(m/n).  相似文献   

9.
For 1 ? c ? p ? 1, let E 1,E 2, …,E m be fixed numbers of the set {0, 1}, and let a 1, a 2, …, a m (1 ? a i ? p, i = 1, 2, …,m) be of opposite parity with E 1,E 2, …,E m respectively such that a 1 a 2a m c (mod p). Let $$N(c,m,p) = {1 \over {{2^{m - 1}}}}\mathop {\sum\limits_{{a_1} = 1}^{p - 1} {\sum\limits_{{a_2} = 1}^{p - 1} \ldots } }\limits_{{a_1}{a_2} \ldots \equiv c{\rm{ (}}\bmod {\rm{ }}p)} \sum\limits_{{a_m} = 1}^{p - 1} {(1 - {{( - 1)}^{{a_1} + {E_1}}})(1 - {{( - 1)}^{{a_2} + {E_2}}}) \ldots } (1 - {( - 1)^{{a_m} + {E_m}}}).$$ We are interested in the mean value of the sums $$\sum\limits_{c = 1}^{p - 1} {{E^2}} (c,m,p),$$ where E(c, m, p) = N(c,m, p)?((p ? 1) m?1)/(2 m?1) for the odd prime p and any integers m ? 2. When m = 2, c = 1, it is the Lehmer problem. In this paper, we generalize the Lehmer problem and use analytic method to give an interesting asymptotic formula of the generalized Lehmer problem.  相似文献   

10.
Let ${\rm} A=k[{u_{1}^{a_{1}}},{u_{2}^{a_{2}}},\dots,{u_{n}^{a_{n}}},{u_{1}^{c_{1}}} \dots {u_{n}^{c_{n}}},{u_{1}^{b_{1}}} \dots {u_{n}^{b_{n}}}]\ \subset k[{u_{1}}, \dots {u_{n}}],$ where, aj, bj, Cj ∈ ?, aj > 0, (bj, Cj) ≠ (0,0) for 1 ≤ j ≤ n, and, further ${\underline b}:=\ ({b_{1}}, \dots,{b_{n}})\ \not=\ 0 $ and ${\underline c}:=\ ({c_{1}}, \dots,{c_{n}})\ \not=\ 0 $ . The main result says that the defining ideal I ? m = (x1,…, xn, y, z) ? k[x1,…, xn, y, z] of the semigroup ring A has analytic spread ?(Im) at most three.  相似文献   

11.
We consider in this paper the existence and the asymptotic behavior of positive ground state solutions of the boundary value problem $${-}\Delta u = a_{1}(x)u^{\alpha_{1}} + a_{2}(x) u^{\alpha_{2}}\,\, {\rm in}\,\, \mathbb{R}^{n}, \lim_{|x| \rightarrow \infty} u(x) = 0$$ , where α 1, α 2 < 1 and a 1, a 2 are nonnegative functions in ${C^{\gamma}_{loc}} (\mathbb{R}^{n})$ , ${0 < \gamma < 1}$ , satisfying some appropriate assumptions related to Karamata regular variation theory.  相似文献   

12.
В статье рассматрива ются одномерные и дву мерные тригонометрические ряды с моно-тонными коэффициентами. Дает ся пример двойного тригонометрическог о ряда (1) $$\mathop \sum \limits_{n,k = 1}^\infty a_{nk} \sin nx\sin ky,$$ , коэффициенты которо го монотонны поk и поп, любая последовательность \(\{ S_{n_k m_k } (x,y)\} _{k = 1}^\infty\) прямоугольных части чных сумм ряда (1), где min(n k ,m k )→∞ приk→∞, расходится по чти всюду на (0,n)2. Кроме того, изучается мера множеств нулей ф ункций (2) $$f(x) = \frac{{a_0 }}{2} + \mathop \sum \limits_{n = 1}^{a_0 } a_n \cos nx\tilde f(x) = \mathop \sum \limits_{n = 1}^\infty a_n \sin nx,$$ , гдеа n ↓ приn→ ∞, и доказ ьшается несколько те орем о скорости убывания ко эффициентовa n рядов (2), если все част ичные суммыS n (f,x) или \(S_n (\tilde f,x)\) дляn=1,2,... неотрицате ль-ны на (0,n).  相似文献   

13.
An analogue of Sidon??s theorem is presented for series of the form $$\sum\limits_{k = 1}^\infty {\sum\limits_{n = 0}^\infty {a_{k,n} } } \cos m_k x\cos ny,$$ where the coefficients a k,n have a constant sign for any fixed k.  相似文献   

14.
We study discrete Sobolev spaces with symmetric inner product $$\left\langle {f,g} \right\rangle _\alpha = \int_{ - 1}^1 {f g d\mu _\alpha } + M[f(1)g(1) + f( - 1)g( - 1)] + K[f'(1)g'(1) + f'( - 1)g'( - 1)]$$ , where M ≥ 0, k ≥ 0, and $$d\mu _\alpha (x) = \frac{{\Gamma (2\alpha + 2)}}{{2^{2\alpha + 1} \Gamma ^2 (\alpha + 1)}}(1 - x^2 )^\alpha dx, \alpha > - 1$$ , is the Gegenbauer probability measure. We obtain the solution of the following extremal problem: Calculate $$\mathop {\inf }\limits_{a_0 ,a_1 ,...,a_{N - r} } \left\{ {\langle P_N^{(r)} ,P_N^{(r)} \rangle _\alpha ,1 \leqslant r \leqslant N - 1, P_N^{(r)} (x) = \sum\limits_{j = N - r + 1}^N {a_j^0 x^j } + \sum\limits_{j = 0}^{N - r} {a_j x^j } } \right\}$$ , where the a j 0 , j = N ? r + 1, N ? r + 2, ..., N ? 1, N, a N 0 > 0, are fixed numbers, and find the extremal polynomial.  相似文献   

15.
We prove the convergence in theL 1(0, 1)-metric of Walsh-Fourier series \(\sum\limits_{k = 0}^\infty {a_k w_k \left( x \right)} \) of an integrable function with coefficients such that limn→∞ and the following Tauberian condition of Hardy-Karamata kind is satisfied: $$\mathop {lim}\limits_{\lambda \to 1 + 0} {\text{ }}\mathop {lim}\limits_{n \to \infty } \sum\limits_{k = n}^{\left[ {\lambda n} \right]} {k^{p - 1} \left| {\Delta a_k } \right|^p } = 0,$$ , wherep>1, [·] denotes the integral part, and Δa k=ak?ak+1.  相似文献   

16.
In this paper, we consider a class of hypoelliptic Ornstein-Uhlenbeck operators in ? N given by $\mathcal{A} = \sum\limits_{i,j = 1}^{p_0 } {a_{ij} \partial _{x_i x_j }^2 + } \sum\limits_{i,j = 1}^N {b_{ij} x_i \partial _x } ,$ where (a ij ), (b ij ) are N × N constant matrices, and (a ij ) is symmetric and positive semidefinite. We deduce global Morrey estimates forA from similar estimates of its evolution operator L on a strip domain S = ? N × [?1, 1].  相似文献   

17.
The mathematical apparatus of algebraic combinatorics is excellently suited to the investigation of symbolic differentiation of analytic functions. In particular, the relationship between the algebraic roots of polynomials and those of their derivatives remains an important topic with wide applications to various branches of pure and applied mathematics. In this paper, a methodology inspired by combinatorial theory is employed to derive analytic expressions for the k-th derivative q (k) of factorized polynomial functions with repeated roots $(x^{\xi} - a_{1})^{\alpha_{1}} (x^{\xi} - a_{2})^{\alpha_{2}} \cdots (x^{\xi} - a_{n})^{\alpha_{n}}$ , where ??????, a i , ?? i ??? and i=1,??,n. It is shown that these derivatives are generating functions for classes of integer sequences whose properties are employed to develop a binary tree algorithm that is suitable for the symbolic evaluation of q (k). Compared to the application of Faá di Bruno??s famous differentiation formula for composite functions and to other existing methods for symbolic differentiation, the algorithm is superior because it does not involve finding integer partitions, which is an NP-complete problem. Mathematical identities that relate this topic to other branches of mathematics (e.g. to statistics via the multinomial distribution and multinomial coefficients) are derived and, in addition, a method for identifying the loci of the roots of polynomial derivatives is outlined. The practical significance of these contributions lies in their applicability to various areas of engineering and physics.  相似文献   

18.
It is proved that iffL 1(?),f'L 1(?) and ∫∣x i f(x)∣dx<∞ fori=1, ...,k?1 and ifA=(a ij ) is a (k×k)-matrix with non-vanishing determinant, for $$\tilde f_A (\zeta ): = \smallint \exp (i\zeta _1 \sum\limits_{j = 1}^k {a_{1j} x^j } + ... + i\zeta _k \sum\limits_{j = 1}^k {a_{kj} x^j } )f(x)dx$$ the following relation holds: $$\tilde f_A (\zeta ) = O(\left\| \zeta \right\|)^{ - b_k } with b_k : = (\sum\limits_{j = 1}^k {j!)^{ - 1} } for k \in \mathbb{N}$$ .  相似文献   

19.
Given numbers a ij ≥ 0 for 1 ≤ i  <  jN, and given numbers b i ≥ 0, iN, we consider the random Hamiltonian $\sum_{i,j \le N} \sqrt{a_{ij}} g_{ij} \sigma_i \sigma_j + \sum_{i \le N} \sqrt{b_i} g_i \sigma_i$ , where g i , g ij denote independent standard normal r.v., and where σ i = ± 1. We give sufficient conditions on the coefficients a ij for the system governed by this Hamiltonian to exhibit “high-temperature behavior”. There results extend known facts concerning the behavior of the Sherrington-Kirkpatrick model at “very high-temperature”. In a similar manner we give a general form of the “perceptron model”.  相似文献   

20.
For p > 1, we establish existence and asymptotic behavior of a positive continuous solution to the following boundary value problem $$\left\{\begin{array}{ll}\frac{1}{A} \left( A\Phi _{p}(u^{\prime})\right) ^{\prime}+a_{1}(r)u^{\alpha _{1}}+a_{2}(r)u^{\alpha _{2}}=0, \, {\rm in}\, (0,\infty ),\\ {\rm lim}_{r\rightarrow 0} A\Phi _{p}(u^{\prime})(r)=0, {\rm lim}_{r\rightarrow \infty } u(r)=0,\end{array}\right.$$ where \({\alpha _{1}, \alpha _{2} < p -1, \Phi _{p}(t) = t|t| ^{p-2},A}\) is a positive differentiable function and a 1, a 2 are two positive functions in \({C_{\rm loc}^{\gamma}((0, \infty )), 0 < \gamma < 1,}\) satisfying some appropriate assumptions related to Karamata regular variation theory. Also, we obtain an uniqueness result when \({\alpha _{1}, \alpha _{2} \in (1-p,p-1)}\) . Our arguments combine a method of sub and supersolutions with Karamata regular variation theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号