首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a previous report, we calculated the infrared absorption spectrum and both the isotropic and anisotropic pump-probe signals for the OD stretch of isotopically dilute water in dilauroylphosphatidylcholine (DLPC) multi-bilayers as a function of the lipid hydration level. These results were then compared to recent experimental measurements and are in generally good agreement. In this paper, we will further investigate the structure and dynamics of hydration water using molecular dynamics simulations and calculations of the two-dimensional infrared and vibrational echo peak shift observables for hydration water in DLPC membranes. These observables have not yet been measured experimentally, but future comparisons may provide insight into spectral diffusion processes and hydration water heterogeneity. We find that at low hydration levels the motion of water molecules inside the lipid membrane is significantly arrested, resulting in very slow spectral diffusion. At higher hydration levels, spectral diffusion is more rapid, but still slower than in bulk water. We also investigate the effects of several common approximations on the calculation of spectroscopic observables by computing these observables within multiple levels of theory. The impact of these approximations on the resulting spectra affects our interpretation of these measurements and reveals that, for example, the cumulant approximation, which may be valid for certain systems, is not a good approximation for a highly heterogeneous environment such as hydration water in lipid multi-bilayers.  相似文献   

2.
The dynamics of water at the surface of artificial membranes composed of aligned multibilayers of the phospholipid dilauroyl phosphatidylcholine (DLPC) are probed with ultrafast polarization selective vibrational pump-probe spectroscopy. The experiments are performed at various hydration levels, x = 2 - 16 water molecules per lipid at 37 degrees C. The water molecules are approximately 1 nm above or below the membrane surface. The experiments are conducted on the OD stretching mode of dilute HOD in H 2O to eliminate vibrational excitation transfer. The FT-IR absorption spectra of the OD stretch in the DLPC bilayer system at low hydration levels shows a red-shift in frequency relative to bulk water, which is in contrast to the blue-shift often observed in systems such as water nanopools in reverse micelles. The spectra for x = 4 - 16 can be reproduced by a superposition of the spectra for x = 2 and bulk water. IR Pump-probe measurements reveal that the vibrational population decays (lifetimes) become longer as the hydration level is decreased. The population decays are fit well by biexponential functions. The population decays, measured as a function of the OD stretch frequency, suggest the existence of two major types of water molecules in the interfacial region of the lipid bilayers. One component may be a clathrate-like water cluster near the hydrophobic choline group and the other may be related to the hydration water molecules mainly associated with the phosphate group. As the hydration level increases, the vibrational lifetimes of these two components decrease, suggesting a continuous evolution of the hydration structures in the two components associated with the swelling of the bilayers. The agreement of the magnitudes of the two components obtained from IR spectra with those from vibrational lifetime measurements further supports the two-component model. The vibrational population decay fitting also gives an estimation of the number of phosphate-associated water molecules and choline-associated water molecules, which range from 1 to 4 and 1 to 12, respectively, as x increases from 2 to 16. Time-dependent anisotropy measurements yield the rate of orientational relaxation as a function of x. The anisotropy decay is biexponential. The fast component is almost independent of x, and is interpreted as small orientational fluctuations that occur without hydrogen-bond rearrangement. The slower component becomes very long as the hydration level decreases. This component is a measure of the rate of complete orientational randomization, which requires H-bond rearrangement and is discussed in terms of a jump reorientation model.  相似文献   

3.
In aqueous acetone solutions, the strong bathochromic shifts observed on the OH and CO stretch infrared (IR) bands are due to hydrogen bonds between these groups. These shifts were evaluated by factor analysis (FA) that separated the band components from which five water and five acetone principal factors were retrieved [J. Chem. Phys. 119, 5632 (2003)]. However, these factors were abstract making them difficult to interpret. To render them real an organization model of molecules is here developed whose abundances are compared to the experimental ones. The model considers that the molecules are randomly organized limited by the hydrogen bond network formed between the water hydrogen atoms and the acetone or water oxygen atoms, indifferently. Because the oxygen of water has two covalent hydrogen atoms which are hydrogen-bonded and may receive up to two hydrogen atoms from neighbor molecules hydrogen-bonded to it, three types of water molecules are found: OH2, OH3, and OH4 (covalent and hydrogen bonds). In the OH stretch region these molecules generate three absorption regimes composed of nu3, nu1, and their satellites. The strength of the H-bond given increases with the number of H-bonds accepted by the oxygen atom of the water H-bond donor, producing nine water situations. Since FA cannot separate those species that evolve concomitantly the nine water situations are regrouped into five factors, the abundance of which compared exactly to that retrieved by FA. From the factors' real spectra the OH stretch absorption are simulated to, respectively, give for the nu3 and nu1 components the mean values for OH2, 3608, 3508; OH3, 3473, 3282 and OH4, 3391, 3223 cm(-1). The mean separations from the gas-phase position which are respectively about 150, 330, and 400 cm(-1) are related to the vacancy of the oxygen electron doublets: two, one, and zero, respectively. No acetone hydrate that sequesters water molecules is formed. Similarly, acetone produces ten species, two of which evolve concomitantly. Spectral similarities further reduce these to five principal IR factors, the abundance of which compared adequately to the experimental results obtained from FA. The band assignment of the five-acetone spectra is given.  相似文献   

4.
The complex environments experienced by water molecules in the hydrophilic channels of Nafion membranes are studied by ultrafast infrared pump-probe spectroscopy. A wavelength dependent study of the vibrational lifetime of the O-D stretch of dilute HOD in H(2)O confined in Nafion membranes provides evidence of two distinct ensembles of water molecules. While only two ensembles are present at each level of membrane hydration studied, the characteristics of the two ensembles change as the water content of the membrane changes. Time dependent anisotropy measurements show that the orientational motions of water molecules in Nafion membranes are significantly slower than in bulk water and that lower hydration levels result in slower orientational relaxation. Initial wavelength dependent results for the anisotropy show no clear variation in the time scale for orientational motion across a broad range of frequencies. The anisotropy decay is analyzed using a model based on restricted orientational diffusion within a hydrogen bond configuration followed by total reorientation through jump diffusion.  相似文献   

5.
The local hydrogen-bonding environment of water confined in glycolipid nanotubes (LNTs) was investigated by Fourier transform infrared (FT-IR) spectroscopy. Using X-ray diffraction (XRD), we estimated the thickness of an interlamellar water layer, which was confined between the bilayer membranes constructing the walls of the LNTs, to be 1.3 +/- 0.3 nm. FT-IR spectroscopic measurement of the confined water showed an obvious reduction in IR absorption in both the low-energy (around 3000 cm(-1)) and high-energy regions (around 3600 cm(-1)) of the OH stretching band as compared to bulk water. The reduction around 3000 cm(-1) indicated a decrease in the relative proportion of the water molecules with a long-range network structure due to a geometrical restriction. This agrees with the results obtained for other multilamellar systems. On the other hand, the remarkable reduction around 3600 cm(-1), which was not observed in the other systems, indicated the absence of weakly hydrogen-bonded water aggregates due to the effect of sugar headgroups.  相似文献   

6.
Diffuse reflectance infrared Fourier transform spectroscopic (DRIFTS) measurements (4000-1500 cm(-1)) and the results of neutron powder diffraction have been combined to study the structure of adsorption complexes of water in a NaX zeolite at different water loadings (25, 48, 72, and 120 water molecules per unit cell, respectively). Sharp bands corresponding to non-hydrogen-bonded OH groups of water molecules and broad associate bands due to hydrogen-bonded molecules are observed in the DRIFT spectra. We observe a remarkable downshift of the high-frequency associate band in a narrow temperature interval when the water amount decreases from 120 to 72 molecules per unit cell, which could signify some kind of "phase transition" for the water inside the zeolite cavities. Neutron powder diffraction results show that water molecules are predominantly localized in or near the 12-ring windows. Water molecules with hydrogen-bonded and non-hydrogen-bonded OH groups were found, in agreement with the observation of sharp and broad bands in the DRIFT spectra. We find strong evidence for the formation of cyclic hexamers of water molecules localized in the 12-ring windows, which are further stabilized by hydrogen bonds to framework oxygen atoms.  相似文献   

7.
The hydrogen-bonded clusters of 2-fluoropyridine with water were studied experimentally in a supersonic free jet and analyzed with molecular orbital calculations. The IR spectra of 2-fluoropyridine-(H2O)(n) (n = 1 to 3) clusters were observed with a fluorescence detected infrared depletion (FDIR) technique in the OH and CH stretching vibrational regions. The frequencies of OH stretching vibrations show that water molecules bond to the nitrogen atom of 2-fluoropyridine in the clusters. The hydrogen-bond formation between aromatic CH and O was evidenced in the 1:2 and 1:3 clusters from the experimental and calculated results. The overtone vibrations of the OH bending mode in hydrogen-bonded water molecules appear in the IR spectra, and these frequencies become higher with the increase of the number of water molecules in the clusters. The band structure of the IR spectra in the CH stretching region changes depending on the number of coordinating water molecules.  相似文献   

8.
Bound water is a major component of biological membranes and is required for the structural stability of the lipid bilayer. It has also been postulated that it is involved in water transport, membrane fusion, and mobility of membrane proteins and lipids. We have measured the fluorescence emission of membrane-bound 1-anilino-8-naphthalenesulfonate (ANS) and the infrared spectra of membranes, both as a function of hydration. ANS fluorescence is sensitive to polarity and fluidity of the membrane-aqueous interface, while infrared absorption is sensitive to the hydrogen bonding and vibrational motion of water and membrane proteins and lipids. The fluorescence results provide evidence of increasing rigidity and/or decreasing polarity of the membrane-aqueous interface with removal of water. The membrane infrared spectra show prominent hydration-dependent changes in a number of bands with possible assignments to cholesterol (vinyl CH bend, OH stretch), protein (amide A, II, V), and bound water (OH stretch). Further characterization of the bound water should allow its incorporation into current models of membrane structure and give insight into the role of membrane hydration in cell surface function.  相似文献   

9.
This study uses infrared (IR) spectroscopic, point detection, mapping procedures to examine tissue samples from normal brain specimens and from astrocytic gliomas, the most frequent human brain tumors. Model systems were derived from cultured glioma cell lines. IR spectra of normal tissue sections distinguished white matter from gray matter by increased spectral contributions from lipids and cholesterol. Qualitatively the same differences were found in IR spectra of low and high grade glioma tissue sections pointing to a significant reduction of brain lipids with increasing malignancy. Whereas spectral contributions of proteins and lipids were similar in IR spectra of glioma cells and tissues, nucleic acid bands were more intense for cells suggesting higher proliferative activities. For statistical analyses of IR spectroscopic maps from 71 samples, a parameter for the lipid to protein ratio was introduced involving the CH(2) symmetric stretch band with lipids as main contributors and the amide I band of proteins. As this parameter correlated with the grade of gliomas obtained from standard histopathological examination, it was applied to classify brain tissue sections based on IR spectroscopic mapping.  相似文献   

10.
Fiber-optic evanescent wave infrared spectroscopy was used for the study of water diffusion in Teflon and has provided valuable information about the structure of water in amorphous hydrophobic polymers. Time-dependent absorption measurements were carried out in two spectral ranges: 3000-3800 cm(-1), associated with the O-H stretching mode, and 1620-1670 cm(-1), associated with the H-O-H bending mode of water. The results indicate that the IR spectra could be expressed as a superposition of spectra due to two species of water molecules: strongly and weakly hydrogen-bonded. We suggest that water molecules form clusters with strongly hydrogen-bonded molecules at the cores and with weakly hydrogen-bonded molecules at the external parts of the clusters. A mathematical model, based on a linear diffusion equation with a moving boundary, gave a ratio of 3.5 between the total number of molecules in a cluster and the number of water molecules at the core of the cluster.  相似文献   

11.
Multilayers consisting of negatively charged phospholipid DMPA and myelin basic protein (MBP) were assembled by Langmuir-Blodgett deposition of floating Langmuir monolayers from the air/water interface to solid substrates. Protein/lipid samples were obtained by binding MBP from the aqueous subphase to the phospholipid monolayers before deposition. The vertical organization of these model membranes (i.e., with organization perpendicular to the substrate surface) was investigated in detail by neutron reflectivity measurements, and the internal distribution of water molecules was determined from the change of contrast after in-situ H2O/D2O exchange. The multilayers were well ordered, with repeating lipid bilayers as fundamental structural unit. MBP was inserted in between adjacent lipid headgroups, such as in the natural myelin membrane. Water molecules in the multilayers were present mainly in the lipid headgroup and protein slab. On exposition of the pure lipid multilayers to a dry atmosphere, a reduction of the bilayer spacing was determined, whereas the global lamellar order was not affected. In contrast, drying of the protein/lipid multilayers induced degradation of the laminar order. The data demonstrate that ordered Langmuir-Blodgett multilayers are versatile model systems for studying how competing interactions between lipid, protein, water, and ions affect the global organization of such multilamellar lipid/protein assemblies. Here, the water molecules were found to be a necessary mediator to maintain the laminar order in a multilayer from DMPA and myelin basic protein.  相似文献   

12.
We report here our studies of hydration dynamics of confined water in aqueous nanochannels (approximately 50 A) of the lipidic cubic phase. By systematically anchoring the hydrocarbon tails of a series of tryptophan-alkyl ester probes into the lipid bilayer, we mapped out with femtosecond resolution the profile of water motions across the nanochannel. Three distinct time scales were observed, revealing discrete channel water structures. The interfacial water at the lipid surface is well-ordered, and the relaxation dynamics occurs in approximately 100-150 ps. These dynamically rigid water molecules are crucial for global structural stability of lipid bilayers and for stabilization of anchored biomolecules in membranes. The adjacent water layers near the lipid interface are hydrogen-bonded networks and the dynamical relaxation takes 10-15 ps. This quasi-bound water motion, similar to the typical protein surface hydration relaxation, facilitates conformation flexibility for biological recognition and function. The water near the channel center is bulklike, and the dynamics is ultrafast in less than 1 ps. These water molecules freely transport biomolecules near the channel center. The corresponding orientational relaxation at these three typical locations is well correlated with the hydration dynamics and local dynamic rigidity. These results reveal unique water structures and dynamical motions in nanoconfinements, which is critical to the understanding of nanoscopic biological activities and nanomaterial properties.  相似文献   

13.
Hydration of the various residues of phospholipids was inferred from the shift in the wave number of their vibration bands, obtained from the amplitudes of their positive and negative peaks in the difference spectra between those of the hydrated and the dry phospholipid multibilayers. The effect of aligned phospholipid layers on the orientation of their hydrating water molecules was inferred from the dichroic ratio of the OH stretching band, measured by polarized attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) with a germanium prism, as a function of the water-to-lipid ratio in the surface film. The results indicate that about seven water molecules are oriented by one phosphatidyl serine molecule in the surface film. About 8 to 11 additional water molecules contribute to the hydration of the polar residues as revealed by the effect on the difference spectra. The hydration appears to be cooperative. A water molecule that initiates hydration of a site facilitates access of additional water molecules, until the hydration of the whole site composed of many different interacting polar residues is completed.  相似文献   

14.
Infrared photodissociation spectroscopy is reported for mass-selected Ni+ (H2O)n complexes in the O-H stretching region up to cluster sizes of n = 25. These clusters fragment by the loss of one or more intact water molecules, and their excitation spectra show distinct bands in the region of the symmetric and asymmetric stretches of water. The first evidence for hydrogen bonding, indicated by a broad band strongly red-shifted from the free OH region, appears at the cluster size of n = 4. At larger cluster sizes, additional red-shifted structure evolves over a broader wavelength range in the hydrogen-bonding region. In the free OH region, the symmetric stretch gradually diminishes in intensity, while the asymmetric stretch develops into a closely spaced doublet near 3700 cm(-1). The data indicate that essentially all of the water molecules are in a hydrogen-bonded network by the size of n = 10. However, there is no evidence for the formation of clathrate structures seen recently via IR spectroscopy of protonated water clusters.  相似文献   

15.
Geometric structures and excited-state proton dislocation of size-selected salicylic acid clusters (salicylic acid and 5-methoxysalicylic acid) with water were studied by using laser spectroscopic techniques. Fluorescence excitation, dispersed fluorescence, and infrared (IR) spectra of those clusters in supersonic jets were examined for both the electronic ground (S0) and first excited (S1) states. The geometric structures of the clusters were determined on the basis of the IR spectra of the OH stretch region with the help of quantum chemical calculations. The hydroxyl group of the water moiety in the clusters forms a ring involving the carboxylic group of the salicylic acid moiety. The IR spectra in S0 show that the intramolecular hydrogen bond in the salicylic acid moiety is still held upon cluster formation, but the phenolic OH stretch band intensity is remarkably weaken in the clusters. The IR spectra in the S1 state and dispersed fluorescence spectra indicated that the intramolecular excited state proton dislocation is hardly affected by the microsolvation with water, in contrast with the strong suppression of the dislocation in the self-solvation.  相似文献   

16.
In an effort to elucidate their structures, mass-selected Cl--(CH4)n (n = 1-10) clusters are probed using infrared spectroscopy in the CH stretch region (2800-3100 cm(-1)). Accompanying ab initio calculations at the MP2/6-311++G(2df,2p) level for the n = 1-3 clusters suggest that methane molecules prefer to attach to the chloride anion by single linear H-bonds and sit adjacent to one another. These conclusions are supported by the agreement between experimental and calculated vibrational band frequencies and intensities. Infrared spectra in the CH stretch region for Cl--(CH4)n clusters containing up to ten CH4 ligands are remarkably simple, each being dominated by a single narrow peak associated with stretching motion of hydrogen-bonded CH groups. The observations are consistent with cluster structures in which at least ten equivalent methane molecules can be accommodated in the first solvation shell about a chloride anion.  相似文献   

17.
Interionic distances are shorter in concentrated ionic solutions, thus instigating the interaction and overlap of hydration shells, as ions become separated by only one or two layers of water molecules. The simultaneous interaction of water with two oppositely charged ions has, so far, only been investigated by computer simulation studies, because the isolated vibrational spectroscopic signature of these molecules remains undetected. Our combined near‐infrared spectroscopic and molecular dynamics simulation studies of alkali halide solutions present a distinct spectral feature, which is highly responsive to depletion of bulk water and merging of hydration shells. The analysis of this spectral feature demonstrates that absorption trends are in good agreement with the law of matching affinities, thus providing the first successful vibrational spectroscopic treatment of this topic. Combined with commonly observed near‐infrared bands, this feature provides a spectral pattern that describes some relevant aspects of ionic hydration.  相似文献   

18.
The solvent reorientation process of the intramolecular charge-transfer (ICT) process of the (p-cyanophenyl)pentamethyldisilane-(H2O)2 (CPDS-(H2O)2) cluster in the excited-state was investigated by transient infrared (IR) absorption spectroscopy. It was found that there are at least two isomers in the charge-transfer (CT) state: one of the isomers exhibits a band of a pi-hydrogen-bonded OH stretch of the water moiety. Analyses of the IR spectra in the dominant isomers revealed that water molecules are hydrogen-bonded with each other in the CT state. This indicates that the reorientation process of the water molecules takes place to form such a dimer structure during the ICT process.  相似文献   

19.
二维红外光谱研究聚碳酸酯薄膜中水的扩散   总被引:1,自引:1,他引:0  
金盈  苏朝晖 《应用化学》2011,28(1):16-21
利用二维衰减全反射红外光谱方法,研究了水在聚碳酸酯(PC)薄膜中的扩散过程,发现水的羟基弯曲振动谱带中可以分辨出分别位于1672、1646和1621 cm-1的吸收峰,而羟基伸缩振动谱带中可以分辨出分别位于3560、3425和3255 cm-1的吸收峰,由此可知水分子在聚碳酸酯薄膜中存在3种状态,分别为与羰基形成强、中强氢键作用的水分子和进入PC微孔中的弱氢键作用的水分子。 经过二维相关分析得到水分子进入PC薄膜的顺序为首先形成中等强度的氢键,然后形成弱和强2种强度的氢键。  相似文献   

20.
The two water gas OH stretch vibrations that absorb in the infrared (IR) near 3700 cm(-1) are redshifted to near 3300 cm(-1) upon liquefaction. The bathochromic shift is due to the formation of four H-bonds: two are from the labile hydrogen atoms to neighbors and two are received from neighbors by the oxygen free electron pairs. Therefore, the water oxygen atom is surrounded by four hydrogen atoms, two of these make covalent bonds that make H-bonds and two are oxygen H-bonded. However, these permute at rate in the ps range. When the water molecules are isolated in acetonitrile (MeCN) or acetone (Me(2)CO), only the labile hydrogen atoms make H-bonds with the solvent. The bathochromic shift of the OH stretch bands is then almost 130 cm(-1) with, however, the asymmetric (ν(3)) and symmetric (ν(1)) stretch bands maintained. When more water is added to the solutions, the oxygen lone doublets make H-bonds with the available labile hydrogen atoms from neighboring water molecules. With one bond accepted, the bathochromic shift is further displaced by almost 170 cm(-1). When the second oxygen doublet is filled, another bathochromic shift by almost 100 cm(-1) is observed. The total bathochromic shift is near 400 cm(-1) with a full width at half height of near 400 cm(1). This is the case of pure liquid water. Notwithstanding the shift and the band broadness, the ν(3) and ν(1) band individualities are maintained with, however, added satellite companions that come from the far IR (FIR) absorption. These added to the fundamental bands are responsible for the band broadness and almost featureless shape of the massive OH stretch absorption of liquid water. Comparison of light and heavy water mixture spectra indicates that the OH and OD stretch regions show five different configurations: OH(4); OH(3)D; OH(2)D(2); OHD(3); and OD(4) [J. Chem. Phys. 116, 4626 (2002)]. The comparison of the OH bands of OH(4) with that of OHD(3) indicates that the main component in OHD(3) is ν(OH), whereas in OH(4) two main components are present: ν(3) and ν(1). Similar results are obtained for the OD bands of OD(4) and ODH(3). These results indicate that the C(2) (v) symmetry of H(2)O and D(2)O is preserved in the liquid and aqueous solutions whereas C(s) is that of HDO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号