首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We solve the compressible Newtonian extrudate swell problem in order to investigate the effect of compressiblity on the shape of the extrudate. We employ a first-order equation of state relating the density to the pressure and use finite elements for the numerical solution of the problem. Our results show that the shape of the extrudate and the final extrudate swell ratio are not significanlty affected even at high compressibility values.  相似文献   

2.
The axisymmetric extrudate swell flow of a compressible Herschel–Bulkley fluid with wall slip is solved numerically. The Papanastasiou-regularized version of the constitutive equation is employed, together with a linear equation of state relating the density of the fluid to the pressure. Wall slip is assumed to obey Navier’s slip law. The combined effects of yield stress, inertia, slip, and compressibility on the extrudate shape and the extrudate swell ratio are analyzed for representative values of the power-law exponent. When the Reynolds number is zero or low, swelling is reduced with the yield stress and eventually the extrudate contracts so that the extrudate swell ratio reaches a minimum beyond which it starts increasing asymptotically to unity. Slip suppresses both swelling and contraction in this regime. For moderate Reynolds numbers, the extrudate may exhibit necking and the extrudate swell ratio initially increases with yield stress reaching a maximum; then, it decreases till a minimum corresponding to contraction, and finally, it converges asymptotically to unity. In this regime, slip tends to eliminate necking and may initially cause further swelling of the extrudate, which is suppressed if slip becomes stronger. Compressibility was found to slightly increase swelling, this effect being more pronounced for moderate yield stress values and wall slip.  相似文献   

3.
In this paper we solve the time-dependent shear flow of an Oldroyd-B fluid with slip along the fixed wall. We use a non-linear slip model relating the shear stress to the velocity at the wall and exhibiting a maximum and a minimum. We assume that the material parameters in the slip equation are such that multiple steady-state solutions do not exist. The stability of the steady-state solutions is investigated by means of a one-dimensional linear stability analysis and by numerical calculations. The instability regimes are always within or coincide with the negative-slope regime of the slip equation. As expected, the numerical results show that the instability regimes are much broader than those predicted by the linear stability analysis. Under our assumptions for the slip equation, the Newtonian solutions are stable everywhere. The interval of instability grows as one moves from the Newtonian to the upper-convected Maxwell model. Perturbing an unstable steady-state solution leads to periodic solutions. The amplitude and the period of the oscillations increase with elasticity.  相似文献   

4.
In the flow of liquids through porous media, nonlinear effects arise from the dependence of the fluid density, porosity, and permeability on pore pressure, which are commonly approximated by simple exponential functions. The resulting flow equation contains a squared gradient term and an exponential dependence of the hydraulic diffusivity on pressure. In the limiting case where the porosity and permeability moduli are comparable, the diffusivity is constant, and the squared gradient term can be removed by introducing a new variable y, depending exponentially on pressure. The published transformations that have been used for this purpose are shown to be special cases of the Cole–Hopf transformation, differing in the choice of integration constants. Application of Laplace transformation to the linear diffusion equation satisfied by y is considered, with particular reference to the effects of the transformation on the boundary conditions. The minimum fluid compressibilities at which nonlinear effects become significant are determined for steady flow between parallel planes and cylinders at constant pressure. Calculations show that the liquid densities obtained from the simple compressibility equation of state agree to within 1% with those obtained from the highly accurate Wagner-Pru?  equation of state at pressures to 20 MPa and temperatures approaching 600 K, suggesting possible applications to some geothermal systems.  相似文献   

5.
Gas Flow in Porous Media With Klinkenberg Effects   总被引:10,自引:0,他引:10  
Gas flow in porous media differs from liquid flow because of the large gas compressibility and pressure-dependent effective permeability. The latter effect, named after Klinkenberg, may have significant impact on gas flow behavior, especially in low permeability media, but it has been ignored in most of the previous studies because of the mathematical difficulty in handling the additional nonlinear term in the gas flow governing equation. This paper presents a set of new analytical solutions developed for analyzing steady-state and transient gas flow through porous media including Klinkenberg effects. The analytical solutions are obtained using a new form of gas flow governing equation that incorporates the Klinkenberg effect. Additional analytical solutions for one-, two- and three-dimensional gas flow in porous media could be readily derived by the following solution procedures in this paper. Furthermore, the validity of the conventional assumption used for linearizing the gas flow equation has been examined. A generally applicable procedure has been developed for accurate evaluation of the analytical solutions which use a linearized diffusivity for transient gas flow. As application examples, the new analytical solutions have been used to verify numerical solutions, and to design new laboratory and field testing techniques to determine the Klinkenberg parameters. The proposed laboratory analysis method is also used to analyze data from steady-state flow tests of three core plugs from The Geysers geothermal field. We show that this new approach and the traditional method of Klinkenberg yield similar results of Klinkenberg constants for the laboratory tests; however, the new method allows one to analyze data from both transient and steady-state tests in various flow geometries.  相似文献   

6.
Classical capillarity theory is based on a hypothesis that virtual motions of fluid particles distinct from those on a surface interface have no effect on the form of the interface. That hypothesis cannot be supported for a compressible fluid. A heuristic reasoning suggests that even small amounts of compressibility could have significant effect on surface behavior. In an earlier work, Finn took a partial account of compressibility, and formulated a variant of the classical capillarity equation for fluid surface height in a vertical capillary tube; he was led to a necessary condition for existence of a solution with prescribed mass in a tube closed at the bottom. For a circular tube, he proved that the condition also suffices, and that solutions are uniquely determined for any contact angle γ. Later Finn took more complete account of compressibility and obtained a new equation of highly nonlinear character but for which the same necessary condition holds. In the present work we consider that equation for circular tubes. We prove that the necessary condition again suffices for existence when 0 ≤ γ < π, and we establish uniqueness when 0 ≤ γ ≤ π/2. Our result is put into relief by the observation that for the unconstrained problem of a tube dipped into an infinite liquid bath, solutions do not in general exist when γ > π/2. Presumably an actual fluid would in that case descend to the bottom of the tube. This kind of singular behavior does not occur for the equation previously considered, nor does it occur in the present case under the presence of a mass constraint.  相似文献   

7.
This paper aims at analyzing the shapes of the bounded traveling wave solu- tions for a class of nonlinear wave equation with a quintic term and obtaining its damped oscillatory solutions. The theory and method of planar dynamical systems are used to make a qualitative analysis to the planar dynamical system which the bounded traveling wave solutions of this equation correspond to. The shapes, existent number, and condi- tions are presented for all bounded traveling wave solutions. The bounded traveling wave solutions are obtained by the undetermined coefficients method according to their shapes, including exact expressions of bell and kink profile solitary wave solutions and approxi- mate expressions of damped oscillatory solutions. For the approximate damped oscillatory solution, using the homogenization principle, its error estimate is given by establishing the integral equation, which reflects the relation between the exact and approximate so- lutions. It can be seen that the error is infinitesimal decreasing in the exponential form.  相似文献   

8.
We consider both the planar and axisymmetric steady, laminar Poiseuille flows of a weakly compressible Newtonian fluid assuming that slip occurs along the wall following Navier’s slip equation and that the density obeys a linear equation of state. A perturbation analysis is performed in terms of the primary flow variables using the dimensionless isothermal compressibility as the perturbation parameter. Solutions up to the second order are derived and compared with available analytical results. The combined effects of slip, compressibility, and inertia are discussed with emphasis on the required pressure drop and the average Darcy friction factor.  相似文献   

9.
The paper presents a model for two-phase flow, where liquid and gas are treated as one fluid with variable density. A one-component fluid and the diffuse-interface model for two-phase flow are assumed at pore level. The wetting properties of the fluid are described by the Cahn theory. Macroscopic equations are deduced in the framework of the Marle formalism. It is shown that two-phase flow in porous media can be described by the Cahn–Hilliard equation for the mass density. The concept of relative permeability is not needed. For non-neutral wetting, it is shown that a capillary pressure exists but that it is not a function of state. Two numerical illustrations are presented, one of them showing that the model is, at least in a simple steady-state situation, compatible with the generalized two-continuum model.  相似文献   

10.
Two steady-state models of magma flow in a conduit are considered, with and without allowance for magma compressibility. As distinct from studies [{xc1}–{xc6}], in which either simplified equations were solved or unrealistic values of the parameters were used, in the present study the complete systems of equations are solved and the values of the parameters correspond to magma flow in a volcanic conduit. The secondary flows obtained in [{xc5}] for model conditions are not formed when the magma is simulated by an incompressible fluid and all the terms of the equations are taken into account. When the magma compressibility is taken into account, in the isothermal case and for constant magma viscosity the entire flow is adequately described by the one-dimensional isothermalmodel, although this approach is not formally applicable.  相似文献   

11.
We explore a mechanism of extrusion instability, based on the combination of nonlinear slip and compressibility. We consider the time-dependent compressible Newtonian extrudate swell problem with slip at the wall. Steady-state solutions are unstable in regimes where the shear stress is a decreasing function of the velocity at the wall. Compressibility provides the means for the alternate storage and release of elastic energy, and, consequently, gives rise to periodic solutions. The added novelty in the present work is the assumption of periodic volumetric flow rate at the inlet of the die. This leads to more involved periodic responses and to free surface oscillations similar to those observed experimentally with the stick-slip instability. To numerically simulate the flow, we use finite elements in space and a fully-implicit scheme in time.Dedicated to the memory of Prof. Tasos Papanastasiou  相似文献   

12.
Hayat  T.  Hameed  M. I.  Asghar  S.  Siddiqui  A. M. 《Meccanica》2004,39(4):345-355
The exact analytic solutions of two problems of a second order fluid in presence of a uniform transverse magnetic field are investigated. The governing equation is of fourth order ordinary differential equation and is solved using perturbation method. In the first problem we discuss the flow of a second order fluid due to non-coaxial rotations of a porous disk and a fluid at infinity. In second problem the flow of a second order conducting fluid between two infinite plates rotating about the same axis is investigated, with suction or blowing along the axial direction. For second order conducting fluid it is observed that asymptotic solution exists for the velocity both in the case of suction and blowing.  相似文献   

13.
Within the Stokes film approximation, unsteady spreading of a thin layer of a heavy viscous fluid along a horizontal superhydrophobic surface is studied in the presence of a given localized mass supply in the film. The forced (induced by the mass supply) spreading regimes are considered, for which the surface tension effects are insignificant. Plane and axisymmetric flows along the principal direction of the slip tensor of the superhydrophobic surface are studied, when the corresponding slip tensor component is either a constant or a power function of the spatial coordinate, measured in the direction of spreading. An evolution equation for the film thickness is derived. It is shown that this equation has self-similar solutions of a source type. The examples of self-similar solutions are constructed for power and exponential time dependences of mass supply. In the final part of the paper, some of the solutions constructed are generalized to the case of a weak dependence of the flow on the second spatial coordinate, caused by a slight variability of the slip coefficient in the direction normal to that of spreading. The constructed self-similar solutions can be used for experimental determination of the parameters important for hydrodynamics, e.g. the slip tensor components of commercial superhydrophobic surfaces.  相似文献   

14.
The time-dependent mathematical model describing the vortex motion of an incompressible polymeric liquid is discussed. In the steady-state case certain particular solutions are found. In the case of the steady-state pressure along the axis of cylinder, a version of deriving this model for both fixed and free boundaries is given.  相似文献   

15.
在等熵方程为压力是密度的任意单值函数形式情况下 ,分析了R T(Rayleigh Taylor)不稳定性中流体可压缩性的作用。在没有边界效应的条件下所作的分析表明 :在重力场作用下流体可压缩性形成的密度分布是R T不稳定性中的致稳因素 ,而扰动流体的膨胀 (收缩 )效应助长R T不稳定性的发展 ;上层重流体的可压缩性是稳定因素 ,而下层轻流体的可压缩性是失稳因素。从扰动发展驱动力和扰动带动的等效质量两个方面对该结论的物理机制进行了分析。  相似文献   

16.
Summary The paper is concerned with a one-dimensional analysis of plane open-channel flow with continuous solidification. The process is of relevance for recent developments in the casting of steel and other metals. The bottom of the channel consists of a rotating casting roll and a horizontal cooling table, where the solidified material is withdrawn with given velocity. The study is restricted to the region downstream of the top of the casting roll. Surface tension is neglected. In the main part of the analysis inviscid fluid flow is considered since the Reynolds number is very large in the applications. It is found that the steady-state solutions are nonunique in a certain parameter range. In addition to a continuous solution, there are two solutions including hydraulic jumps, with one hydraulic jump being located on the casting roll, the other one on the cooling table. Regarding the stability of the non unique solutions, the evolution of disturbances is investigated numerically as an initial-value problem. It is concluded that the hydraulic jump on the cooling table is unstable, while the other discontinuous solution as well as the continuous solution are stable for sufficiently small disturbances. Which stable solution is attained in the steady state, depends on the history of the process. Friction at the liquid/solid interface is taken into account in the last part of the analysis. A constant friction coefficient is assumed. It is found that the history of the process determines the steady-state solution if, and only if, the friction coefficient is sufficiently small. For larger values of the friction coefficient, the steady-state solution is unique and independent of the history of the transient process. Furthermore, for sufficiently large friction coefficients, stable hydraulic jumps are found, in contrast to the inviscid case, also on the cooling table. Received 19 March 1999; accepted for publication 3 May 1999  相似文献   

17.
秦承森  王裴  张凤国 《力学学报》2004,36(6):655-663
在状态方程为压力是密度的任意单值函数形式情况下,运用小扰动分析和奇异摄动法,给出了流体微扰方程渐近解和界面不稳定性的色散关系. 分析表明:对Rayleigh-Taylor不稳定性,在重力场作用下流体可压缩性形成的密度分布是致稳因素;而扰动流体的膨胀收缩效应助长不稳定性的发展;上层重流体的可压缩性是稳定因素,下层轻流体可压缩性是失稳因素. 而对Kelvin-Helmholtz不稳定性,流体可压缩性助长扰动的发展,是不稳定因素.  相似文献   

18.
19.
Experiments concerning the properties of soap films have recently been carried out and these systems have been proposed as experimental versions of theoretical two‐dimensional liquids. A silk filament introduced into a flowing soap film, was seen to demonstrate various stable modes, and these were, namely, a mode in which the filament oscillates and one in which the filament is stationary and aligns with the flow of the liquid. The system could be forced from the oscillatory mode into the non‐ oscillatory mode by varying the length of the filament. In this article we use numerical and computational techniques in order to simulate the strongly coupled behaviour of the filament and the fluid. Preliminary results are presented for the specific case in which the filament is seen to oscillate continuously for the duration of our simulation. We also find that the filament oscillations are strongly suppressed when we reduce the effective length of the filament. We believe that these results are reminiscent of the different oscillatory and non‐oscillatory modes observed in experiment. The numerical solutions show that, in contrast to experiment, vortices are created at the leading edge of the filament and are preferentially grown in the curvature of the filament and are eventually released from the trailing edge of the filament. In a similar manner to oscillating hydrofoils, it seems that the oscillating filaments are in a minimal energy state, extracting sufficient energy from the fluid to oscillate. In comparing numerical and experimental results it is possible that the soap film does have an effect on the fluid flow especially in the boundary layer where surface tension forces are large. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
It is proposed to consider the propagation of surface waves along a tangential magnetohydrodynamic discontinuity in the particular case where the fluid velocities on both sides of the interface are equal to zero. In [1] it was shown that waves called surface Alfvén waves may be propagated along the surface separating a semi-infinite region without a field from a region with a uniform magnetic field. The linear theory of surface Alfvén waves in a compressible medium was considered in [2]. In [3] the damping of surface Alfvén waves as a result of viscosity and heat conduction was investigated. The propagation of low-amplitude nonlinear surface Alfvén waves in an incompressible fluid in the absence of dissipative processes is described by the integrodifferential equation obtained in [4]. By means of a numerical solution of this equation it was shown that a perturbation initially in the form of a sinusoidal wave will break. The breaking time was determined. In this paper the equation derived in [4] is extended to the case of a viscous fluid. It is shown that the equation obtained does not have steady-state solutions. The propagation of periodic disturbances is investigated numerically. Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 94–104, November–December, 1986. The author wishes to thank L. S. Fedorov for assisting with the calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号