首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
纳米阵列电极研究进展   总被引:2,自引:0,他引:2  
从纳米阵列电极的制作、基本原理和应用 3方面综述了纳米阵列电极的研究进展。着重阐述了模板法和自组装法制作纳米阵列电极的具体过程以及纳米阵列电极的扩散电流理论 ,对纳米阵列电极在生物传感器、电化学动力学、电化学分析等方面的应用作了介绍  相似文献   

2.
氧化苏木精复合电极测定牛奶中残留青霉素   总被引:1,自引:0,他引:1  
氧化苏木精复合电极测定牛奶中残留青霉素;电流型电化学生物传感器;氧化苏木精;青霉素  相似文献   

3.
苯二酚在聚吡咯膜修饰电极上的催化反应   总被引:7,自引:0,他引:7  
儿茶酚等有机化合物是人体内的电活性物质,直接参予人体内的各种生理过程.有关这类物质的电化学行为一直是生物化学和化学领域的重要研究课题之一.但这些物质在固体电极上的电极反应迟缓,过电位高,检测比较困难.利用化学修饰电极可以对这类物质的电极反应进行催化,可制成各种电流式传感器[1],特别是聚合物膜修饰电极传感器有催化效率高、稳定性好等优点问,是目前电化学传感器研究中的一个主要方面.聚毗咯膜(PPy)修饰电极自从出现以来已得到了广泛的应用,在电分析化学领域更具有稳定性好,制备条件简便等优点.一些在固体电极…  相似文献   

4.
生物电化学简介   总被引:4,自引:0,他引:4  
简单介绍了生物电化学研究领域的概况。包括:生物膜与生物界面模拟研究(SAM膜模拟生物膜的电化学、液/液界面模拟生物膜的电化学),用于生命科学的电化学技术(电脉冲基因直接导入、电场加速作物生长、癌症的电化学疗法、电化学控制药物释放、在体研究的电化学方法、生物分子的电化学行为)和电化学生物传感器(酶电极传感器、微生物电极传感器、电化学免疫传感器、组织电极与细胞器电极传感器、电化学DNA传感器)。  相似文献   

5.
尤文钰  杨铁金 《化学通报》2016,79(11):1035-1040
本文建立一种新型的青蒿素传感器。首先,在玻碳电极上滴涂氧化石墨,通过电化学方法将氧化石墨还原为石墨烯,然后,在石墨烯上沉积纳米银得到石墨烯/纳米银修饰电极,它作为检测青蒿素的电化学传感器。用此电极对青蒿素进行测定,并通过循环伏安法、差分脉冲伏安法、交流阻抗法等研究其电化学行为。该修饰电极在测定青蒿素溶液时,表现出较正的还原电位和较大的峰电流等优势;对其实验条件如电解质溶液的p H、应用电势等进行了探查,该电化学传感器在青蒿素溶液浓度范围为1.0×10-8~3.0×10-5mol/L时与其还原峰电流呈现良好的线性关系,最低检出限为1.2×10-9mol/L(S/N=3)。此外,对该传感器的稳定性和重现性等也进行了研究,获得令人满意的结果。  相似文献   

6.
酪氨酸酶通过乙二胺作为悬臂分子稳定地固定到功能化氧化石墨烯上,再将该杂化材料修饰玻碳电极表面制成新型生物传感器。酪氨酸酶固定在氧化石墨烯上的物理化学行为通过X射线光电子光谱和电化学阻抗进行表征,显示功能化氧化石墨烯可以促进固定酶的活性位点与修饰电极之间的电子传递。通过循环伏安法研究该电极的直接电化学和电催化行为,表明其电化学行为是一个直接的吸附控制氧化还原反应。在优化实验条件下,对苯二酚在3.0~200.0μmol/L浓度范围内与其氧化峰电流呈良好的线性关系,检出限(S/N=3)达1.0μmol/L。该生物传感器显示了较好的重现性、稳定性及选择性,在实际水样检测中得到良好应用。  相似文献   

7.
采用电化学聚合技术,在掺杂的导电聚吡咯薄膜修饰过的铅笔芯电极上,吸附葡萄糖氧化酶制备葡萄糖生物传感器。首先在含有0.1 mol/L吡咯和0.01 mol/L HCl的溶液中,于0.7 V恒电位下吡咯单体氧化聚合,在铅笔芯电极表面形成聚吡咯薄膜;然后将葡萄糖氧化酶吸附在修饰过的电极上制备出葡萄糖氧化酶-聚吡咯-铅笔芯电极电流型生物传感器。实验考察了吡咯聚合时间、聚合温度、葡萄糖氧化酶吸附量、检测电压以及干扰物对传感器性能的影响。实验结果表明,在优化条件下,传感器的灵敏度为17.78μA/mmol/L,线性范围0.8 mmol/L,线性相关度R=0.9918,响应时间小于16 s,检测下限为18.75μmol/L,有较强的抗干扰能力。  相似文献   

8.
酶/酶免疫电极最佳制备方式的确定及其微观分析   总被引:4,自引:0,他引:4  
利用电化学方法测定各种实验条件下酶电极、酶免疫电极的电化学响应特性 ,以期确定这种新型生物电极的最佳制备条件 ,为生物传感器的应用提供可靠依据  相似文献   

9.
纳米材料领域的快速发展,促进了无酶葡萄糖电化学传感器的研制热潮的兴起。本论文采用计时电流沉积的方式制备了铂纳米花修饰电极,用于改善葡萄糖电化学传感器的性能,同时考察了沉积电位,沉积时间以及电解液的种类对修饰电极性能的影响。研究结果表明,在以氯铂酸(3.0mmol·L~(-1))和硫酸(0.5mol·L~(-1))为电解液,-0.2V的沉积电位,沉积900s时,可以得到葡萄糖氧化峰明显,电化学性能较好的纳米铂修饰电极,所构建的葡萄糖传感器具有较好的稳定性和重现性。  相似文献   

10.
基于TiO2-石墨烯、离子液体和壳聚糖复合膜修饰玻碳电极制备了一种新型的电化学传感器。用循环伏安法研究了血红蛋白在该修饰电极上的直接电化学行为。结果表明,该纳米复合膜能有效地促进血红蛋白在电极上的直接电子转移,保持其生物催化活性。该传感器对H2O2具有良好的催化性能。H2O2的电流响应信号与其浓度在20~860μmol/L范围内呈良好的线性关系,检出限为0.1μmol/L(S/N=3)。传感器具有良好的稳定性和重现性。  相似文献   

11.
A glucose‐functionalized diamine was prepared and used as a new monomer for polyurea synthesis. The diamine was prepared by N‐glycosylation of 1,6‐hexamethylenediamine with D ‐glucose. Upon adding diisocyanates to the diamine, isocyanate reacted selectively with the amino groups, not with the hydroxyl groups of the glucose‐derived structure, to give the corresponding polyureas. The polyureas exhibited highly hydrophilic nature due to the presence of the glucose‐derived side chain. A ternary system consisting of the glucose‐functionalized diamine, piperazine, and diisocyanate gave the corresponding polyureas, where content of the glucose‐derived moiety was tunable by feed ratio between the diamine and piperazine. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

12.
A resonance light-scattering (RLS) detection method for saccharides was developed using dextran-coated CdSe quantum dots (dextran-CdSe-QDs) optical probes. The dextran-CdSe-QDs can be aggregated with concanavalin A (Con A), and the change in RLS intensity is used to monitor the extent of aggregation. The presence of glucose competitively binds with Con A, dissociating the Con A/dextran-CdSe-QDs complexes, affording the RLS intensity change and hence determining glucose concentrations in the range from a few to about 90 mM. Transmission electron microscopy was used to investigate the competitive interaction between glucose and dextran-CdSe-QDs with Con A. The competitive strategy could also be used to detect similar types of saccharides and the affinities of various monosaccharides for Con A increased in the order galactose?glucose < fructose < mannose. The proposed method was successfully applied to determine glucose in the human serum.

A resonance light-scattering (RLS) detection method for saccharides was developed using dextran-coated CdSe quantum dots (dextran-CdSe-QDs) optical probes. The dextran-CdSe-QDs were coupled to concanavalin A (Con A) to facilitate the aggregation of nanoparticles. The presence of glucose competitively binds with Con A, dissociating the Con A/dextran-CdSe-QDs complexes affording the RLS intensity change and hence determining glucose in the range from a few millimolar to about 90 mM. The proposed method was applied to the determination of glucose in human serum samples with satisfactory results.

  相似文献   

13.
Saliva opens a door for noninvasive and painless glucose testing since it reflects changes in the body physiology of diabetic individuals as compared to healthy ones. In this paper, a unique, disposable saliva biosensor has been developed for accurate, low cost, and continuous glucose monitoring. The biosensor exhibits linear dependence of the catalytic current upon glucose bulk concentration over the 0.05–1.5 mM range (R=0.998). A detection limit of 0.003 mM can be calculated considering three times the standard deviation of the blank signal divided by the sensitivity of the sensor. The selectivity of the biosensor was evaluated by adding the interferent species of lactate, ascorbic acid and uric acid into in 0.5 mM glucose; the nearly negligible interference current indicates its good selectivity. The operational stability of the biosensor was measured in 1 mM glucose over a 2 h period (RSD=3.27 %). A clinical trial on real‐time noninvasive salivary glucose monitoring was carried out on 30 individuals by measuring subjects’ salivary glucose and blood glucose in parallel. The results show that there is a good correlation of glucose levels in saliva and in blood 2 h after breakfast. Thus, the disposable biosensor would be a potential alternative for continuous glucose detection in human saliva.  相似文献   

14.
A biocompatible probe for specific glucose recognition is based on photoinitiated boronate affinity–molecular imprinted polymers (BA‐MIPs). The unique pre‐self‐assembly between glucose and boronic acids creates glucose‐specific memory cavities in the BA‐MIPs coating. As a result, the binding constant toward glucose was enhanced by three orders of magnitude. The BA‐MIPs probe was applied to glucose determination in serum and urine and implanted into plant tissues for low‐destructive and long‐term in vivo continuous glucose monitoring.  相似文献   

15.
A glucose-sensitive field-effect transistor (FET) with a two-enzyme membrane containing gluconolactonase and glucose oxidase is investigated. The two-enzyme membrane (ca. 1 μm thick) is formed on the ion-sensitive gate of the FET by photopolymerization. The gluconolactonase used was a partially purified product prepared from crude glucose oxidase by gel filtration. A glucose sensor with only purified glucose oxidase has little response for glucose, but the co-immobilization of gluconolactonase and glucose oxidase considerably enhanced the response amplitude of the glucose sensor. The composition of the two-enzyme/photopolymer solution is optimized; gluconolactonase with an activity at least twice that of glucose oxidase is necessary. The linear calibration graph extends from 0.2 to 2 mM glucose.  相似文献   

16.
A high-performance monitoring system for human blood glucose levels was developed using microchip electrophoresis with a plastic chip. The combination of reductive amination as glucose labeling with fluorescent 2-aminoacridone (AMAC) and glucose-borate complex formation realized the highly selective detection of glucose even in a complex matrix such as a blood sample. The migration time of a single peak, observed on an electropherogram of AMAC-labeled plasma, closely resembled that of glucose standard solution. The treatment of plasma with hexokinase or glucokinase for glucose phosphorylation resulted in a peak shift from approximately 145 to 70 s, corresponding to glucose and glucose-6-phosphate, respectively. A double-logarithm plot revealed a linear relationship between glucose concentration and fluorescence intensity in the range of 1-300 microM of glucose (r(2) = 0.9963; p <0.01), and the detection limit was 0.92 microM. Furthermore, blood glucose concentrations estimated from the standard curves of three subjects were compared with results obtained by conventional colorimetric analysis using glucose dehydrogenase. Good correlation was observed between methods according to simple linear regression analysis (p <0.05). The reproducibility of the assay was about 6.3-9.1% (RSD) and the within-days and between-days reproducibility were 1.6-8.4 and 5.2-7.2%, respectively. This system enables us to determine blood glucose with high sensitivity and accuracy, and will be applicable to clinical diagnosis.  相似文献   

17.
《Analytical letters》2012,45(13):1179-1200
Abstract

A glucose measuring device based on the oxidation of glucose by glucose oxidase and an amperometric kinetic detection was developed. The characteristics obtained with this instrument are comparable with the present glucose instruments but the stability of the enzyme membrane is better and the measuring frequency is higher. In order to expand the applicability of this device to other substrates there was developed a family of bioenzyme electrodes. Enzymes producing glucose as enzymes consuming glucose in addition to glucose oxidase were used.

For determination of peroxidase substrates besides a peroxidase-catalase electrode a three-enzyme system consisting of glucose oxidase, peroxidase and catalase was used.  相似文献   

18.
高盐生  王媛  狄俊伟 《应用化学》2010,27(3):363-366
采用溶胶-凝胶技术将金纳米粒子和葡萄糖氧化酶一次性固定于硅溶胶-凝胶的网络结构中,制备了葡萄糖生物电化学传感器并优化了传感器的制备条件。酶电极对葡萄糖具有良好的电化学响应,葡萄糖浓度在0.02~2.0 mmol/L范围内和催化电流呈线性关系,检出限为0.005 mmol/L。酶电极在4 ℃下贮存100 d后对葡萄糖的响应仅下降8%。该酶电极灵敏度高、响应快、稳定性好。  相似文献   

19.
A novel disposable biamperometric capillary-fill device for glucose was fabricated using thick-film technology and incorporating a polymer mediator and glucose oxidase. A simple electrode system consisting of two identical carbon screen-printed electrodes was used as a transducer. The reagent ink of glucose oxidase and [Os(bpy)2(PVP)10Cl]Cl was drop-coated on the biosensor substrate between the strips of the electrode. A microliter biamperometric capillary-fill device was constructed by adhesion of a glass cover and the biosensor substrate. A drop of test solution was automatically introduced into the microchannel by capillary action, and then a water-soluble layer containing glucose oxidase was solubilized and quickly dispersed throughout the volume of the microchannel. With a voltage of +200mV applied, the current response was directly proportional to the concentration of glucose in the solution. The disposable device for the analysis of glucose shows a linear response range from 0 to 15mM and is virtually insusceptible to interfering species such as 1mM ascorbic acid. The device designed was successfully applied to the determination of glucose in human serum.  相似文献   

20.
Wang J  Diao P  Zhang Q 《The Analyst》2012,137(1):145-152
A dual-region modified electrode was designed and fabricated by means of partitioned electrodeposition of gold and platinum nanoparticles on an indium tin oxide (ITO) conductive glass for dual-component electrochemical detection. The two differently modified regions were assigned to detect two analytes, separately and simultaneously. The gold nanoparticle modified ITO region (AuNPs/ITO) was used for glucose detection while the platinum nanoparticle modified ITO region (PtNPs/ITO) for nitrite detection. The glucose oxidation peak current at 0.10 V on AuNPs/ITO exhibited a linear dependence on the concentration of glucose and was used to determine the concentration of glucose in dual-detection. The nitrite reduction peak current at PtNPs/ITO showed a nonlinear dependence on the concentration of nitrite. A theoretical model combining the adsorption-controlled and the mass-transfer-controlled kinetics was proposed to quantitatively describe the nonlinear behavior. Though the presence of glucose interfered with the electrochemical detection of nitrite, it was demonstrated that the influence of glucose on nitrite detection can be corrected. On the basis of the proposed theoretical model, the simultaneous dual-detection of glucose and nitrite was accomplished at ITO electrodes partitionally modified with AuNPs and PtNPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号