首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We demonstrate an all-microwave two-qubit gate on superconducting qubits which are fixed in frequency at optimal bias points. The gate requires no additional subcircuitry and is tunable via the amplitude of microwave irradiation on one qubit at the transition frequency of the other. We use the gate to generate entangled states with a maximal extracted concurrence of 0.88, and quantum process tomography reveals a gate fidelity of 81%.  相似文献   

2.
We propose to implement a quantum switch scheme for coupling highly detuned superconducting qubits connected by a gap-tunable bridge qubit. By modulating the frequency of the bridge qubit, it can be used as a coupler to switch on/off and adjust the coupling strength between the initially non-interaction qubits. It is shown that the proposals of quantum information transfer and quantum entangled gate between two highly detuned qubits can be implemented with high fidelity. Moreover, we extend the case of coupling the switch to multiple qubits for the generation of W states. The advantages of our scheme are that it eliminates the need for tuning the gaps of the qubits and the cross-talk interaction is greatly suppressed. The influence of decoherence and parameter variation is also investigated by numerical simulation, which suggests that the present scheme is feasible in current experiment.  相似文献   

3.
Quantum and classical correlations in quantum channels are investigated by means of an entangled pure state and a separable state which is closest to an entangled pure state. The coherent information and the separable information are used to estimate how much correlation is transmitted through a quantum channel. As the examples, the linear dissipative channel of qubits and the quantum erasure channel are considered.  相似文献   

4.
Using the methods of quantum trajectories we study effects of dissipative decoherence on the accuracy of the Grover quantum search algorithm. The dependence on the number of qubits and dissipation rate are determined and tested numerically with up to 16 qubits. As a result, our numerical and analytical studies give the universal law for decay of fidelity and probability of searched state which are induced by dissipative decoherence effects. This law is in agreement with the results obtained previously for quantum chaos algorithms.  相似文献   

5.
Teleportation of quantum gates is a critical step for the implementation of quantum networking and teleportation-based models of quantum computation. We report an experimental demonstration of teleportation of the prototypical quantum controlled-NOT (CNOT) gate. Assisted with linear optical manipulations, photon entanglement produced from parametric down-conversion, and postselection from the coincidence measurements, we teleport the quantum CNOT gate from acting on local qubits to acting on remote qubits. The quality of the quantum gate teleportation is characterized through the method of quantum process tomography, with an average fidelity of 0.84 demonstrated for the teleported gate.  相似文献   

6.
李艳玲  冯健  於亚飞 《物理学报》2007,56(12):6797-6802
提出一种任意两粒子纠缠态1→2普适远程克隆方案. 此方案仅需一个特殊的四粒子纠缠态作为量子信道, 就可使处于空间不同位置的两个接收者分别以5/6的保真度得到任意输入态的近似拷贝, 该保真度远高于已有方案中的保真度. 将方案推广到任意两粒子纠缠态1→N(N>2)普适远程克隆的情况, 可使处于不同地点的N个接收者分别以(2N+1)/(3N)的保真度得到输入态的近似拷贝. 另外, 提出一种以上述单个特殊四粒子纠缠态作为量子信道, 在多目标量子比特受控非门和 关键词: 量子纠缠态 普适远程克隆 保真度  相似文献   

7.
陈立冰  路洪  金瑞博 《中国物理》2007,16(11):3204-3211
We present a systematic simple method to implement a generalized quantum control-NOT (CNOT) gate on two d-dimensional distributed systems. First, we show how the nonlocal generalized quantum CNOT gate can be implemented with unity fidelity and unity probability by using a maximally entangled pair of qudits as a quantum channel. We also put forward a scheme for probabilistically implementing the nonlocal operation with unity fidelity by employing a partially entangled qudit pair as a quantum channel. Analysis of the scheme indicates that the use of partially entangled quantum channel for implementing the nonlocal generalized quantum CNOT gate leads to the problem of 'the general optimal information extraction'. We also point out that the nonlocal generalized quantum CNOT gate can be used in the entanglement swapping between particles belonging to distant users in a communication network and distributed quantum computer.[第一段]  相似文献   

8.
《Physics letters. A》2002,303(4):249-252
This Letter presents a simple formula for the average fidelity between a unitary quantum gate and a general quantum operation on a qudit, generalizing the formula for qubits found by Bowdrey et al. [Phys. Lett. A 294 (2002) 258]. This formula may be useful for experimental determination of average gate fidelity. We also give a simplified proof of a formula due to Horodecki et al. [Phys. Rev. A 60 (1999) 1888], connecting average gate fidelity to entanglement fidelity.  相似文献   

9.
We investigate quantum teleportation and Bell nonlocality for two channel qubits coupled via the Heisenberg interaction and subject to two independent dissipative environments. Compared with the case of two uncoupled qubits, it is shown that the interaction Hamiltonian is beneficial for enhancing the teleportation fidelity and Bell nonlocality, and remarkably, it can also be used to create nonclassical teleportation fidelity and Bell nonlocality even from the initial product states. Moreover, the interaction Hamiltonian guarantees the generation of steady-state nonclassical teleportation fidelity, which is independent of the initial state and therefore one can take any state as the initial channel state.  相似文献   

10.
It is well known that multiple superconducting charge qubits coupled to a transmission line resonator can be controlled to achieve quantum logic gates between two arbitrary qubits. We propose a scheme to realize a quantum conditional phase gate with a geometric property by circuit electrodynamics, and it is applied naturally to reaJize the quantum Fourier transform with high fidelity. It is also demonstrated that the application is feasible and considerable under the present experimental technology.  相似文献   

11.
刘欣  廖庆洪  方光宇  王月媛  刘树田 《中国物理 B》2014,23(2):20311-020311
A scheme is proposed to generate GHZ state and realize quantum phase gate for superconducting qubits placed in a microwave cavity. This scheme uses resonant interaction between the qubits and the cavity mode, so that the interaction time is short, which is important in view of decoherence. In particular, the phase gate can be realized simply with a single interaction between the qubits and the cavity mode. With cavity decay being considered, the fidelity and success probability are both very close to unity.  相似文献   

12.
Teleportation of a quantum state may be used for distributing entanglement between distant qubits in quantum communication and for quantum computation. Here we demonstrate the implementation of a teleportation protocol, up to the single-shot measurement step, with superconducting qubits coupled to a microwave resonator. Using full quantum state tomography and evaluating an entanglement witness, we show that the protocol generates a genuine tripartite entangled state of all three qubits. Calculating the projection of the measured density matrix onto the basis states of two qubits allows us to reconstruct the teleported state. Repeating this procedure for a complete set of input states we find an average output state fidelity of 86%.  相似文献   

13.
We propose a method to efficiently generate cluster states in charge qubits, both semiconducting and superconducting, as well as flux qubits. We show that highly entangled cluster states can be realized by a "one-touch" entanglement operation by tuning gate bias voltages for charge qubits. We also investigate the robustness of these cluster states for nonuniform qubits, which are unavoidable in solid-state systems. We find that quantum computation based on cluster states is a promising approach for solid-state qubits.  相似文献   

14.
张英俏  张寿 《中国物理 B》2009,18(11):4683-4689
A scheme for approximate generation of an N-qubit phase gate is proposed in cavity QED based on nonidentical coupling between the atoms and the cavity. The atoms interact with a highly detuned cavity-field mode, but quantum information does not transfer between the atoms and cavity field, and thus the cavity decay is negligible. The gate time does not rise with an increase in the number of qubits. With the choice of a smaller odd number l (related to atom-cavity coupling constants), the phase gate can be generated with a higher fidelity and a higher success probability in a shorter time (the gate time is much shorter than the atomic radiative lifetime and photon lifetime). When the number of qubits N exceeds certain small values, the fidelity and success probability rise slowly with an increase in the number of qubits N. When N→∞, the fidelity and success probability infinitely approach 1, but never exceed 1.  相似文献   

15.
We have investigated the realizability of the controlled-not (cnot) gate and characterized the gate operation by quantum process tomography for a chain of qubits, realized by electrons confined in self-assembled quantum dots embedded in the spin field-effect transistor. We have shown that the cnot gate operation and its process tomography are performable by using the spin exchange interaction and several local qubit rotations within the coherence time of qubits. Moreover we have taken into account the fluctuation of operation time and the imperfection of polarization of channel electrons as sources of decay of fidelity. The cnot process fidelity decreases only by at most 5% by the fluctuation of the operation time and its values as high as 0.49 and 0.72 are obtained for the channel spin polarizations of 0.6 and 0.8, respectively.  相似文献   

16.
By supposing that the quantum channel is affected by the Hamiltonian XY model, quantum teleportation is studied in the absence and presence of a dissipative environment. We find that the dynamics of the average of fidelity and entanglement of the channel depend on which qubits interact with the environment and magnitude of parameters of the Hamiltonian. In the case that the qubits of quantum channel interact with environment, a critical value of entanglement is needed to keep quantum advantage at infinite time. We also find that, the most destructive case is that the qubit to be teleported is subject to an environment. It is shown that quantum advantage may be lost even in the absence of an environment.  相似文献   

17.
We investigate the local implementation of a nonlocal quantum Toffoli gate via partially entangled states. Firstly, we show how the nonlocal Toffoli gate can be implemented with unit fidelity and a certain probability by employing two partially entangled qubit pairs as quantum channels. The quantum circuit that does this proposed implementation is built entirely of local single-level and two-level gates if the target node harness a three-level qudit as a catalyser. This enables the construction of this key nonlocal quantum gate with existing technology. Then, we put forward a scheme to realize deterministic and exact implementation of this nonlocal gate via more partially entangled pairs. In this scheme, the control nodes’ local positive operator valued measurements (POVMs) lies at the heart. We construct the required POVMs. The fact that the deterministic and exact implementation of a nonlocal multi-qubit gate could be realized by using partially entangled qubit pairs and comparatively fewer resources cost is notable.  相似文献   

18.
This paper considers the teleportation of quantum controlled-Not (CNOT) gate by using partially entangled states. Different from the known probability schemes, it presents a method for teleporting a CNOT gate with unit fidelity and unit probability by using two partially entangled pairs as quantum channel. The method is applicable to any two partially entangled pairs satisfying the condition that their smaller Schmidt coefficients μ and ν are (2μ + 2ν - 2μν - 1)≥0. In this scheme, the sender's local generalized measurement described by a positive operator valued measurement (POVM) lies at the heart. It constructs the required POVM. It also puts forward a scheme for teleporting a CNOT with two targets gate with unit fidelity by using same quantum channel. With assistance of local operations and classical communications, three spatially separated users are able to complete the teleportation of a CNOT with two targets gate with probability of (2μ + 2ν- 1). With a proper value of μ and ν, the probability could reach nearly 1.  相似文献   

19.
Entanglement purification is an important method to guarantee the fidelity of long-distance quantum communication. Here, a general entanglement purification protocol (EPP) for mixed state with bit-flip error and phase-flip error is proposed, resorting to unilateral operations and a controlled-phase-flip (CPF) gate. The CPF gate is working with a high fidelity under balance condition of quantum dot embedded in a double-sided optical cavity. This general EPP scheme can purify the mixed state with both bit-flip error and phase-flip error to a high fidelity entangled state relatively fast in some regimes, owing to the unilateral operations and high-fidelity CPF gate, which can largely decrease the resource consumption. This general EPP provides a convenient way for increasing the entanglement of different quantum systems, which has great potential for guaranteeing the fidelity of long-distance quantum communication in the future.  相似文献   

20.
Entanglement states serve as the central resource for a number of important applications in quantum information science, including quantum key distribution, quantum precision measurement, and quantum computing. In pursuit of more promising applications, efforts have been made to generate entangled states with more qubits. However, the efficient creation of a high-fidelity multiparticle entanglement remains an outstanding challenge due to the difficulty that increases exponentially with the number of particles. We design an interferometer that is capable of coupling the polarization and spatial paths of photons and prepare 2-D four-qubit GHZ entanglement states. Using quantum state tomography, entanglement witness, and the violation of Ardehali inequality against local realism, the properties of the prepared 2-D four-qubit entangled state are analyzed. The experimental results show that the prepared four-photon system is an entangled state with high fidelity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号