首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li HF  Lin JM  Su RG  Cai ZW  Uchiyama K 《Electrophoresis》2005,26(9):1825-1833
A protocol of producing multiple polymeric masters from an original glass master mold has been developed, which enables the production of multiple poly(dimethylsiloxane) (PDMS)-based microfluidic devices in a low-cost and efficient manner. Standard wet-etching techniques were used to fabricate an original glass master with negative features, from which more than 50 polymethylmethacrylate (PMMA) positive replica masters were rapidly created using the thermal printing technique. The time to replicate each PMMA master was as short as 20 min. The PMMA replica masters have excellent structural features and could be used to cast PDMS devices for many times. An integration geometry designed for laser-induced fluorescence (LIF) detection, which contains normal deep microfluidic channels and a much deeper optical fiber channel, was successfully transferred into PDMS devices. The positive relief on seven PMMA replica masters is replicated with regard to the negative original glass master, with a depth average variation of 0.89% for 26-microm deep microfluidic channels and 1.16% for the 90 mum deep fiber channel. The imprinted positive relief in PMMA from master-to-master is reproducible with relative standard deviations (RSDs) of 1.06% for the maximum width and 0.46% for depth in terms of the separation channel. The PDMS devices fabricated from the PMMA replica masters were characterized and applied to the separation of a fluorescein isothiocyanate (FITC)-labeled epinephrine sample.  相似文献   

2.
A mixture of five amino acids including arginine, histidine, phenylalanine, serine and glutamic acid was successfully separated in microchip capillary electrophoresis and detected with laser-induced fluorescence (LIF) detector. These amino acids were labeled with 5-(4, 6-dichloro-s-triazin-2-ylamino) fluorescein (DTAF). The analyses were performed on two kinds of modified poly(dimethylsiloxane) (PDMS) microchips. One kind of chip was simply treated with oxygen plasma (OP-chip), and the other was further modified by coating double layers of non-ionic polymer poly(vinyl alcohol) (PVA) after plasma oxidization (PVA-chip). The derivatization condition of amino acids by DTAF was optimized. The properties of the two modified PDMS microchips were studied and separation conditions, such as the buffer pH, buffer concentration and separation voltage, were also optimized. The column efficiencies of the two microchips were in the range of 193,000–1,370,000 plates/m. The DTAF-labeled amino acids were sufficiently separated within 50 s and 90 s in 2.5 cm channels on OP-chip and PVA-chip, respectively.  相似文献   

3.
Dou YH  Bao N  Xu JJ  Meng F  Chen HY 《Electrophoresis》2004,25(17):3024-3031
Separation and detection of proteins have been realized on nonionic surfactant-modified poly(dimethylsiloxane) (PDMS) microfabricated devices with end-column amperometric detection. The hydrophobic PDMS channels are turned into hydrophilic ones after being modified with Brij35 and facilitate the separation of proteins. The coating can remarkably reduce the adsorption of large protein molecules and is stable in the range of pH 6-12. The detection of proteins in such channels needs less rinsing time and thus efficiency is raised. Even large molecules of proteins can also be detected with better reproducibility and enhanced plate numbers. The relative standard deviation (RSD) of the migration time for glucose oxidase (GOD) is 2.2% (n = 19). Separation of GOD and myoglobin has been developed in modified channels. Predominant operational variables, such as the coating conditions, the concentration of surfactant and buffer, are studied in detail.  相似文献   

4.
A new method for preparing poly (vinyl alcohol) (PVA) microspheres was developed by using droplet microfluidic technology. In the microfluidic chip, a large number of uniform, monodispersed PVA droplets were prepared quickly and continuously by using droplet formation technology, and the droplet preparation speed reached 7 per second. The size of the PVA droplets could be controlled by changing the injection flow rate of the two-phase fluid and the width of microfluidic channel. Then the PVA microspheres were formed by physical crosslinking. This method has high preparation efficiency and good monodispersity of the obtained microspheres. Moreover, the process does not require the incorporation of chemical crosslinking agents, avoiding interference with the inclusion material, and is well suited for applications such as drug carrier.  相似文献   

5.
Zhang Y  Ping G  Kaji N  Tokeshi M  Baba Y 《Electrophoresis》2007,28(18):3308-3314
We describe a microchip electrophoresis (MCE) method for the assay of unsaturated disaccharides of chondroitin sulfates, dermatan sulfates, and hyaluronic acid (HA). Poly(vinyl alcohol) (PVA) could be irreversibly adsorbed onto poly(methyl methacrylate) (PMMA) substrates and this approach was applicable for dynamic coating. The characteristics of the PMMA surface with PVA coating were evaluated in terms of the wettability, EOF, and adsorption of 2-aminoacridone (AMAC)-labeled disaccharide. The water contact angle decreased from 73 degrees on a pristine PMMA surface to 37.5 degrees on a PVA-coated surface, indicating that the PVA coating increased hydrophilicity. EOF was reduced approximately twofold and was relatively stable. Scanning electron microscopy and fluorescence microscopy images showed that adsorption of AMAC-labeled disaccharides was dramatically suppressed. Using the PVA coating, baseline separation of two pairs of glycosaminoglycan (GAG) disaccharide isomers, DeltaDi-diS(B)/DeltaDi-diS(D) and DeltaDi-0S/DeltaDi-HA, was achieved in Tris-borate buffer within 130 s by MCE.  相似文献   

6.
聚二甲基硅氧烷基质微流控芯片封接技术的研究   总被引:12,自引:0,他引:12  
考察了聚二甲基硅氧烷(Polydimethylsiloxane,PDMS)预聚体与固化剂间的配比、固化温度及固化时间对PDMS芯片封接强度的影响,得出PDMS芯片封接的最佳条件基片和盖片所用PDMS预聚体与固化剂质量配比分别为10∶1与5∶1,固化温度为75℃,固化时间分别为35~50min和25~40min,封接后继续加热60min.在该条件下封接制作的微芯片历经半年50多次的分析、冲洗及抽液后未见明显损坏,足以满足一般分析任务的要求,并将芯片成功用于两种氨基酸的快速毛细管电泳分离.  相似文献   

7.
A novel covalent strategy was developed to modify the poly(dimethylsiloxane) (PDMS) surface. Briefly, dextran was selectively oxidized to aldehyde groups with sodium periodate and subsequently grafted onto amine-functionalized PDMS surface via Schiff base reaction. As expected, the coated PDMS surface efficiently prevented the biomolecules from adsorption. Electro-osmotic flow (EOF) was successfully suppressed compared with that on the native PDMS microchip. Moreover, the stability of EOF was greatly enhanced and the hydrophilicity of PDMS surface was also improved. To apply thus-coated microchip, the separation of peptides, protein and neurotransmitters was investigated in detail. For comparison, these analytes were also measured on the native PDMS microchips. The results demonstrated that these analytes were efficiently separated and detected on the coated PDMS microchips. Furthermore, the relative standard deviations of their migration times for run-to-run, day-to-day, and chip-to-chip reproducibilities were in the range of 0.6-2.7%. In addition, the coated PDMS microchips showed good stability within 1 month.  相似文献   

8.
Chen L  Ren J  Bi R  Chen D 《Electrophoresis》2004,25(6):914-921
Simple sealing methods for poly(dimethylsiloxane) (PDMS)/glass-based capillary electrophoresis (CE) microchips by UV irradiation are described. Further, we examined the possibility to modify the inner surface of separation channels, using polymethylacrylamide (PDMA) as a dynamic coating reagent. The surface properties of native PDMS, UV-irradiated PDMS, and PDMA-coated PDMS were systematically studied by atomic force microscopy (AFM), infrared absorption by attenuated total reflection infrared (ATR-IR) spectroscopy, and contact angle measurement. We found that PDMA forms a stable coating on PDMS and glass surfaces, eliminating the nonhomogeneous electroosmotic flow (EOF) in channels on PDMS/glass microchips, and improving the hydrophilicity of PDMS surfaces. Mixtures of flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD), and fluorescein were separated in 35 s using PDMA-coated PDMS/glass microchips. A high efficiency of theoretical plates with at least 1365 (105 000 N/m) and a good reproducibility with relative standard deviations (RSD) below 4% in five successive separations were achieved.  相似文献   

9.
We report here a successful free-radical dispersion polymerization of vinyl pivalate (VPi) in an ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([bmim][TFSI]) using poly(vinyl pyrrolidone) (PVP) as a stabilizer. Morphological analysis by FE-SEM revealed that poly(vinyl pivalate) (PVPi) obtained from dispersion polymerizations were in the form of spherical particles. Micron-sized, PVPi particles with a number-average molecular weight (Mn) of 166,400 g/mol could be obtained using 5% stabilizer (w/w to monomer) at 65 °C for 20 h. The effects of varying concentration of stabilizer, initiator and monomer upon polymer yield, molecular weight, and morphology of PVPi were also investigated. Analogous polymerizations in dimethyl sulfoxide (DMSO) and bulk served as references. In addition, the preparation of poly(vinyl alcohol) (PVA) by saponification of the resultant PVPi was described.  相似文献   

10.
Submicron fibers of medium-molecular-weight poly(vinyl alcohol) (MMW-PVA), high-molecular-weight poly(vinyl alcohol) (HMW-PVA), and montmorillonite clay (MMT) in aqueous solutions were prepared by electrospinning technique. The effect of HMW-PVA and MMT on the morphology and mechanical properties of the MMW-PVA/HMW-PVA/MMT nanofibers were investigated for the first time. Scanning electron microscopy, viscometer, tensile strength testing machine, thermal gravimetric analyzer (TGA), and transmission electron microscopy (TEM) were utilized to characterize the PVA/MMT nanofibers morphology and properties. The MMW-PVA/HMW-PVA ratios and MMT concentration played important roles in nanofiber's properties. TEM data demonstrated that exfoliated MMT layers were well distributed within nanofibers. It was also found that the mechanical property and thermal stability were increased with HMW-PVA and MMT contents.  相似文献   

11.
The two liquid state transitions,T ll andT ll, of non-crystalline, uncrosslinked poly(vinyl alcohol) were determined by differential scanning calorimetry.T ll increased as the molecular weightM n increased, whileT ll remained almost constant. Crosslinking and crystallinity lead to disappearance of the transitionT ll. The transitionT ll was linked to mobility of whole chains, whereasT ll was characteristic of segmental mobility.  相似文献   

12.
Radiation effects on the formation of conjugated double bonds in the thermal degradation of poly(vinyl chloride) (PVC) and poly(vinyl alcohol) (PVA) were investigated. Thin films of PVC and PVA were either irradiated with γ-rays at ambient temperature (pre-irradiation) and then subjected to thermal treatment, or irradiated at elevated temperatures (in situ irradiation). An extensive enhancement of the thermal degradation was observed for the pre-irradiation of the PVC films, which was more effective than the effect of the in situ irradiation at the same absorption dose. For the PVA degradation, however, the effect of the in situ irradiation was larger than that of the pre-irradiation. The results were explained and related mechanisms were discussed based on radiation-induced chemical reactions and their individual contributions to the thermal degradation behaviors of the two polymers. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 3089–3095, 1998  相似文献   

13.
Poly(vinyl alcohol) (PVA) (polymer A) and poly(N-vinylpyrrolidone) (PVP) (polymer B) are known to form a thermodynamically miscible pair. In the present study the conclusion on miscibility of PVA/PVP solid blends, confirmed qualitatively (DMTA, FTIR) and quantitatively (DSC, χAB = − 0.69 at 503 K) is compared with the miscibility investigations of PVA/PVP solution blends by the technique of dilute solution viscometry. The miscibility of the ternary (polymer A/ polymer B/ solvent) system is estimated on the basis of experimental and ideal values of the viscosity parameters k, b and [η]. It is found that the conclusions on miscibility or nonmiscibility drawn from viscosity measurements in dilute solution blends depend: (i) on the applied extrapolation method used for the determination of the viscosity interaction parameters, (ii) on the assumed definition of the ideal values and (iii) on the thermodynamic quality of the solvent, which in the case of PVA depends on its degree of hydrolysis. Hence, viscometric investigations of dilute PVA/PVP solution blends have revealed that viscometry, widely used in the literature for estimation of polymer-polymer miscibility can not be recommended as a sole method to presume the miscibility of a polymer pair.  相似文献   

14.
Submicron poly(vinyl alcohol) (PVA) fiber mats were prepared by electrospinning of aqueous PVA solutions in 6-8% concentration. Fiber morphology was observed under a scanning electron microscope and effects of instrument parameters including electric voltage, tip-target distance, flow rate and solution parameters such as concentration on the morphology of electrospun PVA fibers were evaluated. Results showed that, when PVA with higher degree of hydrolysis (DH) of 98% was used, tip-target distance exhibited no significant effect on the fiber morphology, however the morphological structure can be slightly changed by changing the solution flow rate. At high voltages above 10 kV, electrospun PVA fibers exhibited a broad diameter distribution. With increasing solution concentration, the morphology was changed from beaded fiber to uniform fiber and the average fiber diameter could be increased from 87 ± 14 nm to 246 ± 50 nm. It was also found that additions of sodium chloride and ethanol had significant effects on the fiber diameter and the morphology of electrospun PVA fibers because of the different solution conductivity, surface tension and viscosity. When the DH value of PVA was increased from 80% to 99%, the morphology electrospun PVA fibers was changed from ribbon-like fibers to uniform fibers and then to beaded fibers. The addition of aspirin and bovine serum albumin also resulted in the appearance of beads.  相似文献   

15.
Gha-Young Kim 《Talanta》2007,71(1):129-135
A poly(vinyl alcohol) film cross-linked with glutaraldehyde (PVA-GA) was introduced to the surface of a tyrosinase-based carbon paste electrode. The coated PVA-GA film was beneficial in terms of increasing the stability and reproducibility of the enzyme electrode. The electrode showed a sensitive current response to the reduction of the o-quinone, which was the oxidation product of phenol, by the tyrosinase, in the presence of oxygen. The effects of the PVA and PVA-GA coating, the pH, and the GA:PVA ratio on the current response were investigated. The sensitivity of the PVA-GA-Tyr electrode was 130.56 μA/mM (1.8 μA/μM cm2) and the linear range of phenol was 0.5-100 μM. At a higher concentration of phenol (>100 μM), the current response showed the Michaelis-Menten behavior. Using the PVA-GA-Tyr electrode, a two-electrode system was tested as a prototype sensor for portable applications.  相似文献   

16.
Poly(dimethylsiloxane) (PDMS)-PDMS and hybrid PDMS-glass devices have been characterized and compared in terms of current-voltage linearity, contact angle, electroosmotic velocity, electroosmotic mobility, and electrokinetic potential in dependence on the surface treatment. The hybrid PDMS-glass microfluidic devices have further been tested as on-chip capillary electrophoresis systems for the separation of fluorescently labeled amino acids. It has been demonstrated that different methods of surface pretreatment of the PDMS-glass devices result in significantly different separation performance, with plate numbers varying from 650 to 57 000 in dependence on the surface state and the nature of the amino acids. Electrophoretic separations of amino acids have been achieved within tens of seconds with detection limits of less than 2 microM (approximately 2 x 10(-16) to 2.5 x 10(-16) mol quantities at injection volumes of 110-120 pL). The detected amounts of fluorescein isothiocyante (FITC)-amino acids are at least ten times lower, since the amino acid:FITC ratio is 10:1 mol. The results demonstrate the perspective of such hybrid PDMS-glass microfluidic systems and the methods to modify their surfaces for on-chip separation methods for biomolecules.  相似文献   

17.
The morphology of hydrogels based on poly(vinyl alcohol) (PVA) in their frozen hydrated state, modified with biologically active di- and multifunctional molecules was studied by scanning electron microscopy (SEM) with cryo-attachment. The porosity of samples was found to be more regular and ordered in the case of samples containing difunctional, and especially multifunctional carboxylic acids as compared to the neat PVA hydrogel. The morphology is dependent not only from the hydrogel composition but also the number of freezing-thawing cycles. Resulted highly porous and oriented structure has significant influence on materials properties, such as compressive stress and crosslinking density.  相似文献   

18.
Two new methods of inner capillary coating with poly(vinyl alcohol) (PVAL) have been investigated and evaluated by performing DNA capillary electrophoresis (CE) using PVAL as a separation medium and by measuring the electroosmotic flow (EOF) mobility. The treatment of capillaries with a silanol-group modified PVAL (PVAL-Si) has been found to give good coating effects for improving the resolution of DNA CE and for reducing the EOF. This coating must be effectively achieved by combining the adsorptive property of PVAL chains onto silica with the reaction between the silanol groups of PVAL-Si and the silica surface. The adsorption of PVAL onto silica has been observed by using atomic force microscopy (AFM) for PVAL-Si as well as for a nonmodified PVAL as a control. The coating with PVAL that links to the capillary wall surface with more hydrolytically stable bonding, -Si-C-, has been formed by performing the Grignard reaction, followed by in-capillary polymerization of vinyl acetate (VAc) and hydrolysis. This coating has been found to be effective for improving the resolution of DNA CE and for reducing the EOF.  相似文献   

19.
Isotactic 6-armed star-shaped poly(vinyl alcohol) (PVA) with a narrow molecular weight distribution was successfully prepared by the living cationic polymerization of 6-armed star-shaped poly(tert-butyl vinyl ether) (PTBVE) and subsequent acidic ether cleavage. The PTBVE was synthesized using hexa(chloromethyl) melamine (HCMM) as a hexafunctional initiator and ZnI2 or ZnCl2 as an activator in toluene/MC (1/1 v/v) at −70 °C. A better living stability of PTBVE was obtained in the ZnCl2 activator system. The number average molecular weight and the polydispersity index of the 6-armed star-shaped PTBVE polymerized with ZnCl2 at −70 °C for 24 h were 156,000 g/mol and 1.47, respectively. The fraction of the mm sequence of the resulting PVA was 52%.  相似文献   

20.
In the recent years, development of intervertebral disc prosthesis has been of great concern to the world of medicine and science. Substitution of the spinal disc or its part being displaced or damaged due to trauma or a disease process for the artificial structure well imitating high tensile properties and elasticity of the real disc would highly improve the existing treatment techniques. In this work, the attempt to develop the PVA-based hydrogel material for artificial spinal disc has been made. The polymer was initially processed with the use of formaldehyde solution as a crosslinking agent and sulfuric acid as a catalyst. Then properties of the material have been altered by saturating the already existing PVA hydrogel with a mixture of hydrophilic and hydrophobic monomers (2-hydroxyethyl methacrylate and methyl methacrylate) and a subsequent exposure to ionizing radiation (60Co source). In this way, interpenetrating polymer network has been built on the crosslinked PVA scaffold. Resulting structures were tested for their mechanical behavior at different loads. Series of measurements leading to the determination of the physicochemical properties of created gels including crosslink density and swelling abilities were also performed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号