首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Using Spalding's model of turbulence in a turbulent shear flow, we have calculated the root-mean-square value of the concentration fluctuations inside a turbulent jet. Although we used the same equations and the same solution technique as Spalding, we have not been able to find precisely his numerical results derived for a jet issuing into a fluid at rest with the same density as the jet. The differences between our numerical results, Spalding's numerical results and the experimental data of Becker, Hottel and Williams are fairly small only if the initial values of the turbulence energy and the mixing length inside the jet and the turbulence in the ambient fluid are taken into account in the model. For a turbulent jet issuing into a turbulently flowing surrounding stream of different density, we found that the relative concentration fluctuations can increase considerably. This brings out the importance of taking into account property variables in analysing turbulent mixing processes.  相似文献   

2.
The results of photographic studies of the behavior of an electric arc in a submerged gas jet, using both regular photography and still and cine shadow photography, are presented. The interaction of the arc with the turbulent portion of the jet and the development of disturbances in the arc and the thermal layer around the arc dependent on initial jet velocity are noted. Experimentally obtained values for extent of the arc laminar zone, radius of arc thermal layer, and electric field intensity are compared with calculated values.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 17–23, September–October, 1971.  相似文献   

3.
为了研究线圈脉冲电流参数对破甲弹金属射流箍缩特性的影响, 提出了均匀线圈中脉冲电流作用下不均匀粗细金属射流磁感应强度、感应电流密度及箍缩电磁力分布的理论模型, 建立了线圈与金属射流作用的有限元模型, 分析了励磁线圈中所施加脉冲电流参数对金属射流的影响规律。结果表明, 随着励磁线圈中所施加脉冲电流幅值的增大, 金属射流中的感应电流密度、磁感应强度及电磁力也随之增大, 励磁线圈中所施加的脉冲电流幅值Jmax≥1×1010 A/m2, 才能保证金属射流可靠变形;随着励磁线圈中所施加脉冲电流频率的增加, 金属射流中的感应电流密度、磁感应强度及电磁力整体均呈现一定程度的趋肤效应, 且在一定的频率范围内, 趋肤层逐渐变薄, 分析得知, 当励磁线圈中脉冲电流的频率满足50 kHz≤f≤100 kHz时, 就能够保证金属射流发生有效变形, 进而延缓金属射流箍缩直至断裂的过程。  相似文献   

4.
5.
V. V. Lunev 《Fluid Dynamics》1977,12(3):421-427
The change of form of a body due to disintegration (ablation) during aerodynamic or other types of heating is described by an equation (we shall call it the ablation equation); the type of this equation is largely determined by the law of external heating. Such problems in different particular formulations have been investigated in [1–4] and others. Within the realm of simplest assumptions (methods of local similarity for the distribution of convective heat fluxes, absence of preheating) this equation is a first-order integrodifferential equation with significantly nonlinear properties. Below, its characteristic properties are described for two-dimensional problems and a solution is obtained in the neighborhood of the corner points of an initial nonsmooth profile, for which a particular example may be (as will be shown below) a body of stationary form that remains unchanged during the ablation process. It is shown that this solution may belong to one of three types: of these, one, which is discontinuous, retains the corner point, the second smears it, and the third is of mixed character.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 95–102, May–June, 1977.  相似文献   

6.
In this work, the cross-statistics of acceleration and wall pressure fluctuations generated by an incompressible jet interacting with a tangential flat-plate are presented. The results are derived from an experimental test campaign on a laboratory-scale model involving simultaneous velocity and wall pressure measurements. The pressure footprint of the jet on the surface was measured through a cavity-mounted microphone array, whereas pointwise velocity measurements were carried out by a hot wire anemometer. The time derivative of the velocity signal has been taken as an estimation of the local acceleration of the jet. The multivariate statistics between acceleration and wall pressure are achieved through cross-correlations and cross-spectra, highlighting that the causality relation is more significant in the potential core where the Kelvin–Helmholtz instability is dominant. The application of a conditional sampling procedure based on wavelet transform allowed us to educe the acceleration flow structures related to the energetic wall-pressure events. The analysis revealed that, unlike the velocity, the acceleration signatures were detected only for positions where the jet had not yet impinged on the plate, their shape being related to a convected wavepacket structure.  相似文献   

7.
8.
The problem is considered of the passage of a direct current through a solution of a weak electrolyte in a two-dimensional cell. Allowance is made for the electrochemical reactions of dissociation and reconbination which take place in the electrolyte when the rate of dissociation of the molecules is regarded as dependent on the electric field intensity [1–3]. For electrolytes whose recombination coefficient is of the order of magnitude of the Langevin coefficient, theoretical current—voltage characteristics are given for the limiting cases of large and small values of the characteristic times for the ion concentrations to be changed by electrochemical reactions and the transport of ions by the electric field. A method of determining the dissociation rate, the recombination coefficient, and the ion mobility coefficients is proposed on the basis of comparison of the theoretical and experimental current—voltage characteristics.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6. pp. 113–120, November–December, 1984.  相似文献   

9.
Large-scale organized vortical structures were studied experimentally in a free swirling jet of air experiencing vortex precession (PVC) at ambient conditions. Detailed measurements were performed in the region near the nozzle exit using phase-locked LDV and PIV, at a Reynolds number of Re ?? 24,400 and a swirl parameter S ?? 1.0. The investigation allowed reconstruction of the time-averaged flowfield, with the associated distribution of turbulent fluctuations, the phase-locked structure of the jet and the associated precessing vortex structure. An original joint analysis of power spectra and probability density functions of velocity data led to quantification of the PVC effect on turbulent fluctuations. This analysis showed that the PVC contribution can be properly separated from the background random turbulence, reproducing the results of phase-locked measurements. It is found that the background turbulence in the near field is substantially weaker if compared to the coherent fluctuations induced by vortex precession.  相似文献   

10.
The classical exponentially decaying wall jet considered independently by Tetervin (NACA TN 1644 40 pp, 1948), Akatnov (Leningrad Politek Inst Trudy 5:24–31, 1953) and Glauert (J Fluid Mech 1:625–643, 1956) as well as its algebraically decaying counterpart (which will be referred to hereafter as “algebraic Glauert Jet”, or AG-jet for short) belong to the same similarity class of solutions of the boundary layer equations. We investigate in this paper the thermal characteristics of a nonpreheated AG-jet over a permeable wall for prescribed constant wall temperature and prescribed constant heat flux. Their scaling behavior for small and large values of the Prandtl number is discussed in detail and compared to that of the classical Tetervin–Akatnov–Glauert wall jet.  相似文献   

11.
The influence of current on the absolute instability of a capillary jet of nonviscous weakly conducting fluid is considered. A relation between the Weber and Alfven numbers that sets off regions of absolute and convective instability is obtained.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 4, pp. 179–182, July–August, 1995.  相似文献   

12.
Radially confined, axisymmetric impinging jet flows are investigated by using the standard particle image velocimetry experimental technique. The confinement is achieved by placing a confinement block around a jet, co-axially. The inner diameter of the block is successively varied to nine different values. The inlet-based Reynolds number of the jet is kept constant at 5000. The nine diametric values yielded nine different flows of widely different characteristics. Among other usage, an insight into the flow characteristics can be helpful in designing compact impinging jet applications, as such a radially confined flow is equivalent to passing the pre-impingement jet through a hole perforated in a solid wall (i.e. the jet source can be placed behind a wall). The study has revealed that the flows, in general, form two circulation zones, three mixing layers, and two boundary layers. Based on turbulence characteristics of the five shear layers, overall characteristics of the flows are understood systematically. Mean velocity and various turbulence statistics are also presented, and mechanisms underlying behind their variations are explained. Finally, scaling laws are obtained for the mean velocity and for the turbulence statistics, both in the impingement and in the wall jet regions.  相似文献   

13.
Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 110–113, September–October, 1989.  相似文献   

14.
We have recently discovered a new type of self-excited flapping jets due to a flexible film whose leading edge is fixed at the nozzle exit [Exp Ther Fluid Sci, 106, 226-233]. This paper is to report the experimental investigation on mixing characteristics of the jet induced by a rectangular FEP film. Hot wire anemometry and flow visualization are used to examine the flapping jet flow versus the non-flapping counterpart. Experiments are conducted under the following conditions: i.e., L/D = 1.0 (fixed), W/D = 0.03 ~ 1.0 (varying) and Re = 10000 ~ 45000 (varying); where W and L are the film's width and length, D is the nozzle-exit diameter, and Re is the Reynolds number defined by Re UoD/ν with Uo and ν being the jet-exit velocity and fluid viscosity.It is found that the jet-flapping frequency fF varies with W in a complex fashion while it grows roughly linearly with increasing Uo for W/D ≥ 0.5. The flapping Strouhal number StF fFD/Uo ranges in 0.13 ≤ StF ≤ 0.23 for Re = 15,000 ~ 45,000. These Strouhal numbers are substantially lower than that (≈ 0.45 ~ 0.7) for the primary vortex generation in the free jet, but one to two orders of magnitude higher than those from the conventional self-exciting fluidic devices. In general, the flapping jet decays and spreads more rapidly than does the free jet. As W increases, the decaying and spreading rates both grow. Of significance, the centerline evolutions of Taylor and Kolmogorov scales versus the integral scale are examined to characterize the small scales of turbulence against the large-scale motion.  相似文献   

15.
The flow and mixing characteristics of a forward-inclined stack-issued jet at various inclination angles (θ) and jet-to-crossflow momentum flux ratios (R) were experimentally studied in an open-loop wind tunnel. Flow behaviors were examined using the laser-assisted smoke flow visualization technique. The instantaneous velocities of the upwind-side shear-layer were digitized by a hot-wire anemometer using a high-speed data acquisition system. The instability frequencies in the upwind-side shear-layer vortices were obtained by the fast Fourier transform method. Long-exposure flow images were processed using the binary edge-detection technique to obtain the jet spread width. Transverse dispersion of jet fluids was determined using tracer gas concentration detection. The upwind-side shear-layer vortices revealed four characteristic flow modes: the High impingement-crossflow dominated mode (about θ < 15° and low R), the High impingement-jet flow dominated mode (about θ < 25° and high R), the Low impingement-crossflow dominated mode (about θ > 15° and low R), and the Low impingement-jet flow dominated mode (about θ > 25° and high R). Increasing θ in the crossflow dominated regimes eliminated the upwind-side shear-layer vortices, while increasing θ in the jet flow dominated regimes emphasized the upwind-side shear-layer vortices. Increasing θ at a fixed value of R increased jet spread width in the far field in all modes. In the near field, at x/d < 5 in the High impingement-crossflow dominated regime, the jet spread width was greater than in the Low impingement-crossflow dominated regime. In the jet flow dominated regimes, higher θ values led to greater jet spread width. Transverse dispersion of the jet fluids approached the jet spread width results. In the Low impingement-jet flow dominated regime, transverse dispersion of the jet fluids was significantly increased compared to the other regimes. In addition, the maximum tracer gas concentration was severely reduced at all axial stages, which implied better dispersion of the jet fluids in this regime.  相似文献   

16.
17.
The formation of pressure fluctuations at the inflow of a jet into a cavity (or the so-called resonance tube) was first observed by Hartmann. Further investigations showed that at the same time there is a heating of the gas in the cavity [1, 2]. It was established in [1, 2] that at subsonic and slightly supersonic velocities (M < 2.0) the cavity air can be heated up to 500–700 °K. Further investigations [4, 6] showed that by using monatomic gases inside the cavity one can reach even higher temperatures (T 800–900 °K). The resonance tubes find an application as powerful sound sources. There is also a possibility of their use in thermochemistry, and for the plasma production [6], In the literature, there is an absence of data on the resonance tube characteristics for large Mach numbers. In the present work we investigate the resonance tubes for M = 3.2–4.0. These investigations have shown that pressure oscillations can occur at these Mach numbers with the peak-to-peak amplitude of P 0.4·Po, where Po is the total pressure in the inflowing jet. Depending on the clearance between the nozzle and the cavity, both low- and high-frequency oscillations can be set up. It is established that the most intense shock-wave heating of the gas takes place at high-frequency fluctuations, although their amplitude is smaller in comparison with the low-frequency ones. It is shown that the cold air inside the cavity can be heated by means of the fluctuations up to T 1600 °K or more.Translated from Izvestiya Akamemii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 104–111, September–October, 1977.  相似文献   

18.
19.
Mixing characteristics and coherent structures populating the near-nozzle area of a rotating-pipe jet at the Reynolds number of 5300 were studied by Large-eddy simulation (LES). The swirl rate, defined as the ratio of the tangential velocity of the inner pipe wall to the bulk axial velocity, varied from 0 to 1, corresponding to a weak-to-moderate swirl intensity, insufficient to induce reverse flow near the nozzle. The visualization shows that for the non-swirling jet the near-wall streaky structures generated in the pipe interact with the shear layer, evolving into hairpin-like structures that become tilted at low rotation rates. For higher swirl, they cannot be recognized as they are destroyed at the nozzle exit. No large-scale coherent structures akin to Kelvin–Helmholtz vortical rings in the ‘top-hat’ jets are identifiable close to the nozzle. Using the single and joint probability density functions of velocity and passive scalar (temperature) fields we quantify the events responsible for the intensive entrainment at various swirl numbers. The isosurface of the temperature field indicates the meandering and precessing motion of the rotating jet core at the axial distance of 6D downstream, where D is the diameter of the pipe. The Fourier analysis with respect to the azimuthal angle and time reveals an interplay between the co- and counter-rotating modes. These findings explain the previously detected but not fully clarified phenomenon of the weakly counter-rotating jet core at low swirl rates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号