首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The first examples of catalytic asymmetric ring-closing metathesis (ARCM) reactions of enol ethers are reported. To identify the most effective catalysts, various chiral Mo- and Ru-based catalysts were screened. Although chiral Ru catalysts (those that do not bear a phosphine ligand) promote ARCM in some cases, such transformations proceed in <10% ee. In contrast, Mo-based alkylidenes give rise to efficient ARCM and deliver the desired products in the optically enriched form. Thus, Mo-catalyzed enantioselective transformations allow access to various five- and six-membered cyclic enol ethers in up to 94% ee from readily available achiral starting materials. The first examples of catalytic ARCM that lead to the formation of all-carbon quaternary stereogenic centers are also disclosed. Mechanistic models that offer a plausible rationale for the identity of major enantiomers as well as the observed levels of enantioselectivity are provided. Representative examples demonstrate that the enol ether moiety and the unreacted alkene of the ARCM products can be discriminated with excellent site selectivity (>98%).  相似文献   

2.
The first examples of catalytic asymmetric conjugate addition (ACA) of alkylzinc reagents to trisubstituted nitroalkenes, leading to the formation of nitroalkanes bearing a quaternary carbon stereogenic center, are reported. Reactions are promoted in the presence of 4 mol % of a readily available amino acid-based phosphine and 2 mol % (CuOTf).C6H6. Cu-catalyzed reactions proceed efficiently in up to 98% ee and can be carried out with a variety of dialkylzinc reagents and trisubstituted nitroolefins. We highlight the synthetic utility of the products obtained by efficient conversion of optically enriched nitroalkanes to the corresponding carboxylic acids.  相似文献   

3.
4.
Chiral α-amino ketones are common structural motifs in natural products and pharmaceuticals, as well as important synthons in organic synthesis. Thus, establishing efficient methods for preparing compounds with these privileged scaffolds is an important endeavor in synthetic chemistry. Herein we disclose a new catalytic asymmetric approach for the synthesis of chiral α-amino ketones through a chiral palladium-catalyzed arylation reaction of in situ generated challenging α-keto imines from previously unreported C-acyl N-sulfonyl-N,O-aminals, with arylboronic acids. The current reaction offers a straightforward approach to the asymmetric synthesis of acyclic α-amino ketones in a practical and highly stereocontrolled manner. Meanwhile, the multiple roles of the chiral Pd(ii) complex catalyst in the reaction were also reported.

Chiral α-amino ketones are common structural motifs in natural products and pharmaceuticals, as well as important synthons in organic synthesis.  相似文献   

5.
The construction of chiral quaternary carbon stereocenters has been a long-standing challenge in organic chemistry. Particularly, α-quaternary amino acids that are of high importance in biochemistry still lack a straightforward synthetic method. We here reported a hydroformylation approach to access chiral quaternary stereogenic centers, which has been a long-standing challenge in transition metal catalysis. α,β-Unsaturated carboxylic acid derivatives undergo hydroformylation with a rhodium catalyst to generate an α-quaternary stereocenter under mild conditions. By using this method, a variety of chiral α-quaternary amino acids could be synthesized with satisfactory enantioselectivity. In-depth investigation revealed that the regioselectivity is dramatically influenced by the electronic properties of the substituents attached to the target C Created by potrace 1.16, written by Peter Selinger 2001-2019 C bond. By applying NMR and DFT analyses, the chiral environment of a rhodium/Yanphos complex was depicted, based on which a substrate-catalyst interaction model was proposed.

A rhodium-catalyzed asymmetric hydroformylation reaction was reported to construct chiral α-quaternary amino acid derivatives. High chemo-, regio- and enantioselectivity were realized in one step.  相似文献   

6.
7.
A convenient and practical method for the preparation of enantiomerically pure α-trifluoromethylated α-propargylamines is described. A range of enantiopure α-trifluoromethylated α-propargyl sulfinamides were obtained by the addition of lithium acetylides generated in situ with n-BuLi and terminal alkynes to diverse chiral CF3-substituted (S)-N-tert-butanesulfinyl ketimines in moderate to excellent yields (56–97%) and with uniformly excellent diastereoselectivities (>99:1) by using Ti(OiPr)4 as the catalyst and THF as the polar solvent. Enantiomerically pure α-trifluoromethylated α,α-dibranched propargyl amines were then readily obtained in excellent yields (87–97%) by acidic cleavage of the tert-butanesulfinyl group.  相似文献   

8.
A zinc enamide of a chiral imine derived from a ketone and (S)-valinol or (S)-t-leucinol undergoes addition to 1-alkene to generate a gamma-zincioimine intermediate, which reacts with a carbon electrophile to give upon hydrolysis an optically active alpha-substituted ketone in good yield. The stereoselectivity of the addition reaction may reach 99% for the reaction of a cyclohexanone imine with ethylene.  相似文献   

9.
This paper describes the preparation of two new optically active aliphatic β‐amino alcohols (R)‐5,5‐dimethyl‐2–(dimethylamino)‐1, 1‐diphenyl‐1‐bersanol (la) and (S)‐8,8‐dimethyl‐2–(dimethylamino)‐1, 1‐diphenyl‐1‐nonanol (1b). They were synthesized by methylation of the corresponding β‐amino alcohols 2a and 2b. Compounds 1a and 1b catalyze the addition of diethylzinc to various aldehydes enantioselectivity. The catalyst structure‐enantioselectivity relationships were discussed.  相似文献   

10.
氨基醇砌块用于螺/环丙环类手性化合物的合成   总被引:4,自引:0,他引:4  
王建平  陈庆华 《有机化学》2001,21(10):728-731
手性氨基醇砌块3与5-(l-孟氧基)-3-溴-2(5H)-呋喃酮手性合成子4通过串联的不对称双Michael加成/分子内亲核取代反应,得到了具有四个新的手性中心的氨基醇手性砌块/螺环/环丙烷类化合物7(44%~57%,de≥98%)。通过元素分析,[α]^20~D,UV,IR,^1HNMR,^13CNMR,MS确认了它们的化学结构。本工作可以为含有某些活性官能团的多手性中心的复杂结构化合物提供新的合成策略。  相似文献   

11.
(+)-α-Vetivone has been synthesised in nine steps. The absolute stereochemistry of the two stereogenic centres is controlled in the same key step involving the stereoselective Michael addition of a chiral imine of 4-isopropylidene-2-methylcyclohexanone to phenyl crotonate.  相似文献   

12.
A series of novel C2‐symmetric chiral pyridine β‐amino alcohol ligands have been synthesized from 2,6‐pyridine dicarboxaldehyde, m‐phthalaldehyde and chiral β‐amino alcohols through a two‐step reaction. All their structures were characterized by 1H NMR, 13C NMR and IR. Their enantioselective induction behaviors were examined under different conditions such as the structure of the ligands, reaction temperature, solvent, reaction time and catalytic amount. The results show that the corresponding chiral secondary alcohols can be obtained with high yields and moderate to good enantiomeric excess. The best result, up to 89% ee, was obtained when the ligand 3c (2S,2′R)‐2,2′‐((pyridine‐2,6‐diylbis(methylene))bisazanediyl))bis(4‐methyl‐1,1‐diphenylpentan‐1‐ol) was used in toluene at room temperature. The ligand 3g (2S,2′R)‐2,2′‐((1,3‐phenylenebis(methylene))bis(azanediyl))bis(4‐methyl‐1,1‐diphenylpentan‐1‐ol) was prepared in which the pyridine ring was replaced by the benzene ring compared to 3c in order to illustrate the unique role of the N atom in the pyridine ring in the inductive reaction. The results indicate that the coordination of the N atom of the pyridine ring is essential in the asymmetric induction reaction. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
《Tetrahedron letters》1988,29(44):5645-5648
Readily available chiral tridentate ligand 8 catalyzes the highly Si-face selective addition of diethyl-, di-n-propylzinc and, more significantly, of divinylzinc to aromatic and aliphatic aldehydes whereas bidentate ligands 11 and 12 exert a topologically reversed catalytic bias.  相似文献   

14.
Me3Al, Et3Al, and vinylalane species undergo enantioselective conjugate addition to a wide range of 2- or 3-substituted enones (cyclopent-2-enones, cyclohex-2-enones, 3-methyl cyclohept-2-enone) in the presence of catalytic amount of copper salt (copper thiophene carboxylate, [Cu(CH3CN)4]BF4 or [CuOTf]2C6H6) and tropos-phosphoramidite-based ligand. Thus, chiral quaternary centers can be built, with up to 98% ee after rigorous optimization of experimental conditions. It was shown that the main important parameter was the order of the introduction of the reagents. Then, the generated enantioenriched aluminium enolates and the chiral conjugate adducts were functionalized and used for subsequent reactions.  相似文献   

15.
16.
An ephedrine-derived morpholine dione is employed in the synthesis of chiral alkylidene morpholinones that are efficiently converted to β-substituted α,γ-dihydroxy butyramides, precursors of the corresponding butyrolactones. Enantioselective synthesis of a spiro analog of pantolactone as well as a naturally occurring pantolactone homolog is achieved with this protocol.  相似文献   

17.
The copper-catalyzed asymmetric conjugate addition of Grignard reagents to trisubstituted cyclic enones affords enantioenriched all-carbon quaternary centers with up to 96% ee. The chiral ligand is a diaminocarbene, directly generated in situ. The combination of Grignard reagent and diaminocarbene is unprecedented in conjugate addition, and the additon of the phenyl group, on such enones, cannot be done by other conjugate addition methods.  相似文献   

18.
A new series of chiral 3‐hydroxyazetidines has been prepared from (S)‐1‐(4‐methoxyphenyl)ethylamine. These ligands have shown excellent catalytic activities and enantiomeric selectivities in asymmetric addition of diethylzinc to aromatic aldehydes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
20.
A catalytic enantioselective method for the formation of alkyne-substituted all-carbon quaternary stereogenic centers is reported. Additions of alkynylaluminums to alkyl-, aryl-, carboxylic ester-, or silyl-substituted allylic phosphates are promoted by 1.0-5.0 mol % loadings of NHC-Cu complexes derived from air-stable and commercially available CuCl(2)·2H(2)O. The requisite Al-based reagents are prepared through treatment of the corresponding aryl-, heteroaryl-, alkyl-, or alkenyl-substituted terminal alkynes with diisobutylaluminum hydride in the presence of 5.0 mol % Et(3)N at ambient temperature. The desired 1,4-enynes are obtained in up to 98% yield and >99:1 enantiomeric ratio. Selected Au-catalyzed cyclizations involving the alkyne unit of the enantiomerically enriched products are presented as a demonstration of the method's utility in chemical synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号