首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Difference X‐ray photoelectron spectroscopy (D‐XPS) revealed the surface oxidation process of a diamond‐like carbon (DLC) film. Evaluation of surface functional groups on DLC solely by the C 1s spectrum is difficult because the spectrum is broad and has a secondary asymmetric lineshape. D‐XPS clarified the subtle but critical changes at the DLC surface caused by wet oxidation. The hydroxyl (C―OH) group was dominant at the oxidized surface. Further oxidized carbonyl (C?O) and carboxyl (including carboxylate) (COO) groups were also obtained; however, the oxidation of C?O to COO was suppressed to some extent because the reaction required C―C bond cleavage. Wet oxidation cleaved the aliphatic hydrogenated and non‐hydrogenated sp2 carbon bonds (C―H sp2 and C―C sp2) to create a pair of C―OH and hydrogenated sp3 carbon (C―H sp3) bonds. The reaction yield for C―H sp2 was superior at the surface, suggesting that the DLC film was hydrogen rich at the surface. Oxidation of aromatic sp2 rings or polycyclic aromatic hydrocarbons such as nanographite to phenols did not occur because of their resonance stabilization with electron delocalization. Non‐hydrogenated sp3 carbon (C―C sp3) bonds were not affected by oxidation, suggesting that these bonds are chemically inert. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Tensile stresses accelerate the rate of oxidation by ozone of films of polyolefins, high-density and low-density polyethylene, and isotactic polypropylene. Experiments have been performed on thin (up to 20 μm) uniaxially oriented films under constant stress σ, under conditions where the chemical kinetics rather than diffusion dominates. It is found that the oxidation rate is proportional to exp(γ′σ/RT) where γ′ is an empirical constant. The effects of unimolecular chain scission and the change of molecular polymer parameters under stress on this dependence are negligible. An analogy with the kinetics of oxidation of stressed cycloparaffins by ozone is noted. A mechanism is suggested to explain the accelerating effect of tensile deformations on chemical processes involving rehybridization of carbon atoms in the main chain from the sp3 to the sp2 state. An ESR study with a stable nitroxyl radical probe revealed a change in the segmental mobility of polymer chains in the course of loading.  相似文献   

3.
We studied nanocarbon film electrodes with the aim of detecting tryptophan metabolites via the kynurenine pathway. The nanocarbon films were formed by using unbalanced magnetron sputtering, and they exhibited superior electrode properties including a wide potential window and a low background current as a result of the sp3-containing structure and ultraflat surface. These properties allowed us to detect certain tryptophan metabolites such as kynurenic acid (KYNA), which has a relatively high oxidation potential. We also investigated the effect of the sp2/sp3 ratio of the nanocarbon film as regards the electrode activity in relation to target molecules. We found that the sp2/sp3 ratio played important roles in both widening the potential window and obtaining superior electrode performance for the metabolites. The nanocarbon film with a high sp3 content was beneficial as regards the electrode performance with respect to the detection limit and sensitivity. Compared with conventional carbon-based electrodes, the nanocarbon film electrode with a high sp3 content exhibited higher electrode activity against KYNA while maintaining a low background current. Computational experiments revealed that the theoretical oxidation potential (Eox) value for some targets coincided with that obtained in electrochemical experiments using our nanocarbon film electrode.  相似文献   

4.
The divergent synthesis of dihydropyrimidouracil and pyrimidouracil derivatives from N-uracil amidines and tertiaryamines by an oxidative C(sp3)−N cleavage cascade cyclization reaction is first described. This transformation enables the formation of new C(sp3)−N and C(sp2)−N bonds via the selection of different oxidation conditions. The features of this method include tunable product selectivity, excellent chemoselectivity, readily available starting materials, broad substrate scope, good tolerance of functional groups, and moderate to high yields.  相似文献   

5.
A radical cation salt‐initiated phosphorylation of N‐benzylanilines was realized through an aerobic oxidation of the sp3 C?H bond, providing a series of α‐aminophosphonates in high yields. An investigation of the reaction scope revealed that this mild catalyst system is superior in good functional group tolerance and high reaction efficiency. The mechanistic study implied that the cleavage of the sp3 C?H bond was involved in the rate‐determining step.  相似文献   

6.
Polyethylene (PE) film was implanted with 1000-keV Ar+ ions to a fluence of 5 × 1014 ions/cm2 under high vacuum conditions (2.5 × 10−6 torr) and the film surface was investigated by means of microhardness and microwear measurements, and FTIR/ATR, Raman, and XPS techniques. Ion implantation significantly increased the subsurface hardness and also significantly improved the microwear resistance of the polymer. The implanted surface region of the film was found to consist of two distinct layers. One was the outermost carbon layer with a thickness of the order of 10 nm. In this layer, ca. 75% of carbon atoms were combined by graphitic sp2 and diamond-like sp3 bonds, and the remaining 25% had chemical links with oxygen atoms. Spectroscopic data suggested that the sp2-bonded carbons segregated in graphite-like clusters containing imbedded oxygen atoms, interconnected by the sp3-bonded carbons. The other was the subsurface layer resulting from PE oxidation after ion-beam treatment. This layer was characterized by high contents of O H and CO groups as well as ester and double bonds. The chemical composition of the layer was uniform and did not vary over the layer thickness of about 1.4 μm. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 715–725, 1998  相似文献   

7.
Hydrogenated amorphous carbon films (a‐C : H) were prepared by d.c.‐pulse plasma chemical vapor deposition using CH4 and H2 gases. The microstructure and hardness of the resulting films were investigated at different deposition pressures (6, 8, 11, 15, and 20 Pa). The growth rate increased sharply from 3.2 to 10.3 nm/min with increasing the pressure from 6 to 20 Pa. According to Raman spectra, XPS, and Fourier transform infrared analysis, the films deposited at the pressure of 6 and 8 Pa have high sp3 content and show typical diamond‐like character. However, the microstructures and bond configuration of the films deposited at 11, 15, and 20 Pa have high sp2 content and favored fullerene‐like nanostructure. The hardness and sp2 content were shown to reach their minimum values simultaneously at a deposition pressure of 8 Pa and then increased continuously. The film with fullerene‐like nanostructure obtained at 20 Pa displays a high Raman ID/IG ratio (~1.6), and low XPS C 1s binding energy (284.4 eV). The microstructural analysis indicates that the films are composed of a hard and locally dense fullerene‐like network, i.e. a predominantly sp2‐bonded material. The rigidity of the films is basically provided by a matrix of dispersed cross‐linked sp2 sites. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
One of the major challenges in organic synthesis is the activation or deconstructive functionalization of unreactive C(sp3)–C(sp3) bonds, which requires using transition or precious metal catalysts. We present here an alternative: the deconstructive lactamization of piperidines without using transition metal catalysts. To this end, we use 3‐alkoxyamino‐2‐piperidones, which were prepared from piperidines through a dual C(sp3)–H oxidation, as transitory intermediates. Experimental and theoretical studies confirm that this unprecedented lactamization occurs in a tandem manner involving an oxidative deamination of 3‐alkoxyamino‐2‐piperidones to 3‐keto‐2‐piperidones, followed by a regioselective Baeyer–Villiger oxidation to give N‐carboxyanhydride intermediates, which finally undergo a spontaneous and concerted decarboxylative intramolecular translactamization.  相似文献   

9.
Twofold distal C−H functionalization was accomplished by difunctionalization of nonactivated alkenes to provide rapid access to multifunctionalized molecules. The multicomponent ruthenium-catalyzed remote 1,n-difunctionalization (n=6,7) of nonactivated alkenes with fluoroalkyl halides and heteroarenes in a modular manner is reported. The meta-C(sp2)−H/C-6(sp3)−H distal functionalization featured mild conditions, unique selectivity, and broad substrate scope with a domino process for twofold remote C(sp2)−H/C(sp3)−H activation of the sequential formation of three different carbon-centered radicals. A plausible mechanism was proposed based on detailed experimental and computational studies.  相似文献   

10.
The Stille cross-coupling reaction is one of the most common strategies for the construction of C−C bonds. Despite notable strides in the advancement of the Stille reaction, persistent challenges persist in hindering its greener evolution. These challenges encompass multiple facets, such as the high cost of precious metals and ligands, the demand for various additives, and the slow reaction rate. In comparison to the dominant palladium-catalysed Stille reactions, cost-effective nickel-catalysed systems lag behind, and enantioconvergent Stille reactions of racemic stannanes remain undeveloped. Herein, we present a pioneering instance of nickel-catalysed enantioconvergent Stille cross-coupling reactions of racemic stannane reagents, resulting in the formation of C−C bonds in good to high yields with excellent stereoselectivity. This strategy provides a practical, scalable, and operationally straightforward method for the synthesis of C(sp3)−C(sp3), C(sp3)−C(sp2), and C(sp3)−C(sp) bonds under exceptionally mild conditions (without additives and bases, ambient temperature). The innovative use of synergistic photoredox/nickel catalysis enables a novel single-electron transmetalation process of stannane reagents, providing a new research paradigm of Stille reactions.  相似文献   

11.
Described is a systematic comparison of factors impacting the relative rates and selectivities of C(sp3)?C and C(sp3)?O bond‐forming reactions at high‐valent Ni as a function of oxidation state. Two Ni complexes are compared: a cationic octahedral NiIV complex ligated by tris(pyrazolyl)borate and a cationic octahedral NiIII complex ligated by tris(pyrazolyl)methane. Key features of reactivity/selectivity are revealed: 1) C(sp3)?C(sp2) bond‐forming reductive elimination occurs from both centers, but the NiIII complex reacts up to 300‐fold faster than the NiIV, depending on the reaction conditions. The relative reactivity is proposed to derive from ligand dissociation kinetics, which vary as a function of oxidation state and the presence/absence of visible light. 2) Upon the addition of acetate (AcO?), the NiIV complex exclusively undergoes C(sp3)?OAc bond formation, while the NiIII analogue forms the C(sp3)?C(sp2) coupled product selectively. This difference is rationalized based on the electrophilicity of the respective M?C(sp3) bonds, and thus their relative reactivity towards outer‐sphere SN2‐type bond‐forming reactions.  相似文献   

12.
1H n.m.r. spectra of 36 derivatives of 6-acetoxy-2,4-cyclohexadienones were analysed. All available evidence indicates that all members of the series have similar conformations which do not depart significantly from planarity. Substituent-induced chemical shifts and interproton coupling constants correlate well with those in the analogously substituted ethylene and benzene derivatives. In particular, it appears that a substituent on the central carbon atom exerts a similar influence on 4J(HH) across a ‘W’ path when the three intervening carbon atoms are a part of a benzene ring, an allylic system (i.e. sp3–sp2–sp2), a localized sp2–sp2–sp2 system or a saturated (i.e. sp3–sp3–sp3) system.  相似文献   

13.
Despite several methodologies established for C(sp2)−I selective C(sp2)−C(sp3) bond formations, achieving arene-flanked quaternary carbons by cross-coupling of tertiary alkyl precursors with bromo(iodo)arenes in a C(sp2)−I selective manner is rare. Here we report a general Ni-catalyzed C(sp2)−I selective cross-electrophile coupling (XEC) reaction, in which, beyond 3° alkyl bromides (for constructing arene-flanked quaternary carbons), 2° and 1° alkyl bromides are also demonstrated to be viable coupling partners. Moreover, this mild XEC displays excellent C(sp2)−I selectivity and functional group compatibility. The practicality of this XEC is demonstrated in simplifying the routes to several medicinally relevant and synthetically challenging compounds. Extensive experiments show that the terpyridine-ligated NiI halide can exclusively activate alkyl bromides, forming a NiI−alkyl complex through a Zn reduction. Attendant density functional theory (DFT) calculations reveal two different pathways for the oxidative addition of the NiI−alkyl complex to the C(sp2)−I bond of bromo(iodo)arenes, explaining both the high C(sp2)−I selectivity and generality of our XEC.  相似文献   

14.
The potential functions of internal rotation around the Csp 2-X bond in C6H5XCF3 molecules (X = O or S) were obtained by quantum-chemical calculations in the HF/6-31G(d), MP2(f)/6-31G(d), and B3LYP/6-31G(d) approximations. The calculations were performed in the range of torsion angles (angle between the planes of the benzene ring and Csp 2-X-Csp 3 bonds) from 0° to 90° with a 15° step. The barriers to rotation around the Csp 2-X bonds (kJ mol- 1) were evaluated: for C6H5XCF3, 7.60 (HF), 3.04 (MP2), and 1.04 (B3LYP); for C6H5XCF3, 16.57 (HF), 14.67 (MP2), and 8.73 (B3LYP). The geometries (bond angles and bond lengths), Koopmans ionization potentials, and dipole moments of the molecules were calculated. The hybridization, energy, and population of the lone electron pairs of the heteroatoms, and also the energy of their resonance interaction with antibonding orbitals and the natural atomic charges were evaluated using the NBO approach.  相似文献   

15.
Catalyst control over higher-order stereogenicity addresses significantly extended stereochemical space, but selective methods to govern threefold stereogenic units remained elusive. Herein, we report the stereoselective synthesis of threefold stereogenic triptycyl sulfones with atropisomerism arising from a C(sp3)−S bond. An oxidation of a stereodynamic thioether controlled by a chiral phosphoric acid catalyst allowed selective access to enantioenriched triptycyl sulfoxides. The ensuing enantiospecific and diastereoselective catalytic oxidation to a threefold stereogenic sulfone provided overall control over the stereogenic C−S axis. All three stereoisomers were addressable with enantio- and diastereodivergence and a stereoselectivity of up to (−sc): (+sc) : (ap)=94 : 6 :<1.  相似文献   

16.
Based on results of electron diffraction, gas phase infrared spectroscopy (IR), and MP2/6-31 + G* ab initio calculations, a set of molecular mechanics (MM3) parameters was developed for molecules containing the N(sp3)—O(sp3) moiety. Using this set of parameters, MM3 is able to reproduce structures (bond lengths and bond angles) and vibrational spectra satisfactorily. © 1994 by John Wiley & Sons, Inc.  相似文献   

17.
Selective synthesis of three different bioactive heterocycles; isoxazolines, 5-hydroxy-2-isoxazolines and isoxazoles from the same starting material using TEMPO (2,2,6,6-Tetramethylpiperidin-1-oxyl) as a radical initiator is reported. Selectivity was achieved using different oxidants with TEMPO. The reaction goes through a 1,5-HAT (hydrogen atom transfer) process resulting in products with good yields. This strategy offers a straightforward route to three different heterocycles from oximes via radical-mediated C(sp3)-H oxidation.  相似文献   

18.
The non‐enzymatic acylative kinetic resolution of challenging aryl–alkenyl (sp2 vs. sp2) substituted secondary alcohols is described, with effective enantiodiscrimination achieved using the isothiourea organocatalyst HyperBTM (1 mol %) and isobutyric anhydride. The kinetic resolution of a wide range of aryl–alkenyl substituted alcohols has been evaluated, with either electron‐rich or naphthyl aryl substituents in combination with an unsubstituted vinyl substituent providing the highest selectivity (S=2–1980). The use of this protocol for the gram‐scale (2.5 g) kinetic resolution of a model aryl–vinyl (sp2 vs. sp2) substituted secondary alcohol is demonstrated, giving access to >1 g of each of the product enantiomers both in 99:1 e.r.  相似文献   

19.
The relationships between experimental and theoretical 13C NMR chemical shifts of a pristine fullerene C60, monoadducts from [2 + n] cycloaddition (n = 1–3), and one [2 + 1] bis‐adduct are systematically analyzed for the first time by using diverse quantum‐chemical levels of theory. These levels involved B3LYP, B3PW91, B97‐2, mPW1PW91, PBE1PBE, and X3LYP hybrid functionals combined with 3‐21G, 6‐31G, 6‐31G(d), 6‐31G(d,p), 6‐31G(d,2p), LanL2DZ, and SDDAll basis sets. X3LYP/6‐31G approach is determined to have the lowest deviations from the 13C NMR experimental data compared to the other methods for all the fullerene compounds (mean absolute error value is 0.856 ppm and root mean squared error value is 1.197 ppm). The highest deviations are characteristic for α (sp2 C2/C5/C8/C10) and β (sp2 C6/C7/C11/C12) carbon atoms relative to a functionalization site and for those (sp3 C1/C9) directly attached with a side fragment in the [2 + n] monoadducts (n = 1–3). A probable reason of such deviation is that the approaches do not take into account a contribution of paramagnetic ring currents to 13C NMR chemical shifts. The results will be useful in design of novel fullerene derivatives and in performing unambiguous 13C NMR chemical shift assignments with modern quantum chemistry calculations.  相似文献   

20.
The gold carbene generated from vinylidenecyclopropanes (VDCPs) can smoothly perform a C(sp3)?H bond insertion reaction, stereoselectively affording the intramolecular C(sp3)?H bond functionalized product, benzoxepine, with syn‐configuration in moderate to good yields under mild conditions. The KIE investigation on this bond functionalization partially revealed that the carbene insertion step might be rate‐determining. Using a chiral gold(I) catalyst, the first example on the asymmetric variant of gold carbene insertion into C(sp3)?H bond has been disclosed, giving the desired products with excellent results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号