首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 15 毫秒
1.
The levels of radioactivity and heavy metals in soil, plant and groundwater samples collected from the area of the new campus of Taif University, Saudi Arabia, and its neighbouring areas have been determined. High-resolution gamma-ray spectroscopy was used for radioactivity measurements, and inductively coupled plasma atomic emission spectroscopy was used to determine the concentration of heavy metals. The means of 226Ra, 228Ra and 40K concentrations in water samples collected from four wells were found to be 0.13±0.03, 0.05±0.03 and 1.3±0.5 Bq l?1, respectively. The means of 238U, 226Ra, 228Ra (232Th for soil samples) and 40K concentrations in wild plant and soil samples were found to be 3.7±4.1, 8.8±11.6, 3.8±2.9 and 1025±685, and 8.6±3.4, 12.8±3.4, 16.6±7.1 and 618±82 Bq kg?1 dry weight (DW), respectively. The 137Cs of artificial origin was also detected in soil samples with a mean concentration of 3.8±2.2 Bq kg?1 DW. Evaluating the results, it can be concluded that the concentrations of 238U, 226Ra, 232Th and 40K in soil samples fall within the world average. Furthermore, 19 trace and major elements in groundwater samples and 22 elements in soil and plant samples were determined. The sampling locations of soil can be classified into three groups (relatively high, medium and low polluted) according to their calculated metal pollution index using the contents of trace and major elements. A cluster analysis of the contents of radioactivity and trace element contents in soil samples shows the presence of two main distinct clusters of sampling locations.  相似文献   

2.
Natural and anthropogenic radioactivity of sand and water samples collected from the four big rivers of Punjab province, Pakistan, was measured using a high-purity germanium detector coupled with a high resolution multichannel analyser. The average concentration of the naturally occurring radionuclides 226Ra, 232Th and 40K in all the sand samples from the rivers Jhelum, Chenab, Ravi and Indus was found to be 22±0.6, 36±1 and 287±10 Bq?kg ?1, respectively, while the concentration of the anthropogenic radionuclide 137Cs was found to be below the minimum detectable activity, i.e. ~ 1.2 Bq?kg ?1. All the sand samples have Raeq concentrations lower than the limit of 370 Bq?kg ?1. Indoor (H in) and outdoor (H out) radiation hazard indices were calculated for the samples to assess the radiation hazards arising due to the use of this sand in construction, and were found to be less than unity in the study area. Calculated values of the absorbed dose rate were less than the typical world average value of 59 nGy?h ?1, and the annual effective dose rate was also less than the typical world value of 70 μSv, except in the Indus river, in which it is slightly higher then the world average. Results show that the measured values are comparable with other global radioactivity measurements. None of the studied riverbeds was considered a radiological hazard, and their sand can be safely used in construction.  相似文献   

3.
Research of the effect of salinity on the fate of radionuclides has been focused on seas or estuarine systems while there is almost no information on marine environments with a salinity higher than that of sea water. The hypersaline Bardawil lagoon is a concentration basin, with evaporation exceeding precipitation. This study presents the characteristics of some environmental factors including salinity and their influence on the distribution of natural and artificial radionuclides in different compartments of the lagoon. The concentrations of 238U, 234Th, 228Ra and 137Cs in sediments show some degree of dependency on the water's salinity. Migration of these radionuclides in the lagoon's sediments must take place from high salinity to low-salinity regions. Cluster analysis revealed the data structure for sediment by separating 137Cs and 40K from 232Th, 226Ra, and 234Th and for sand by separating 40K from the other radioisotopes.  相似文献   

4.
The analysis of gamma-emitting radionuclides in nature, i.e. 226Ra, 232Th, 40K and 137Cs, has been carried out in soil samples collected from Peshawar University Campus and surrounding areas using a high purity germanium detector coupled with a computer-based high-resolution multichannel analyser. The activity concentrations in soil ranged from 30.20±0.65 to 61.90±0.95, 50.10±0.54 to 102.80±1.04, 373.60±4.56 to 1082±11.38 and 9.50±0.11 to 46.60±0.42 Bq kg?1 for 226Ra, 232Th, 40K and 137Cs, with a mean value of 45±7.70, 67±12.50, 878±180 and 19±9.20 Bq kg?1, respectively. The radium equivalent activity, internal and external hazard indices have mean values of 203.40±29.40 Bq kg?1, 0.56 and 0.68, respectively. The mean values of outdoor and indoor absorbed dose rates in air and the annual effective dose equivalents were found to be 106.50 and 128 nGy h?1 and 0.19 and 0.54 mSv y?1, respectively. In the present study, 40K was the major radionuclide present in soil samples. The presence of 137Cs indicates that this area also received some fallout from the nuclear accident of the Chernobyl power plant in 1986. The activity concentrations of radionuclides found in soil samples during the current investigation were nominal. Therefore, they are not associated with any potential source of health hazard to the public.  相似文献   

5.
The radioactivity levels are poorly studied in non-coastal arid regions. For this reason, 38 locations covering an area of about 350 km(2) in northeast Sinai, Egypt, were investigated by γ-ray spectroscopy. Moderately significant correlations among (238)U, (234)Th, and (226)Ra isotopes and low significant correlations between the concentrations of (238)U-series and (232)Th in sand were obtained. No evidence of correlation was found between the concentrations of radioisotopes and pH, grain size, total organic matter content, bicarbonate or calcium carbonate concentrations of the sand samples. The mean values of soil-to-plant transfer factor were 0.15, 0.18, 1.52 and 0.74 for (226)Ra, (232)Th, (40)K, and (137)Cs, respectively. The range of concentrations of (226)Ra,( 232)Th, and (40)K in water samples collected from five wells were<0.4-0.16,<0.4-0.13, and<0.15-1.62?Bq?l(-1), respectively. The mean absorbed dose rate in outdoor air at a height of 1?m above the ground surface for the sand samples was 19.4?nGy?h(-1). The Ra(eq) activities of the sands are lower than the recommended maximum value of 370 Bq kg(-1) criterion limit for building materials.  相似文献   

6.
7.
Nasarawa State is located in north central Nigeria and it is known as Nigeria's home of solid minerals. It is endowed with barite, copper, zinc, tantalite and granite. Continuous releases of mining waste and tailings into the biosphere may result in a build-up of radionuclides in air, water and soil. This work therefore aims to measure the activity concentration levels of primordial radionuclides in the soil/sediment samples collected from selected mines of the mining areas of Nasarawa State. The paper also assesses the radiological and radio ecological impacts of mining activities on the residents of mining areas and their environment. The activity concentrations of primordial radionuclides (226Ra, 232Th and 40K) in the surface soils/sediment samples were determined using sodium iodide-thallium gamma spectroscopy. Seven major mines were considered with 21 samples taken from each of the mines for radiochemistry analysis. The human health hazard assessment was conducted using regulatory methodologies set by the United Nations Scientific Committee on the Effects of Atomic Radiation, while the radio ecological impact assessment was conducted using the ERICA tool v. 1.2. The result shows that the activity concentrations of 40K in the water ways of the Akiri copper and the Azara barite mines are 60 and 67?% higher than the world average value for 40K, respectively. In all mines, the annual effective dose rates (mSv y?1) were less than unity, and a maximum annual gonadal dose of 0.58 mSv y?1 is received at the Akiri copper mine, which is almost twice the world average value for gonadal dose. The external hazard indices for all the mines were less than unity. Our results also show that mollusc-gastropod, insect larvae, mollusc-bivalve and zooplankton are the freshwater biotas with the highest dose rates ranging from 5 to 7 µGy h?1. These higher dose rates could be associated with zinc and copper mining at Abuni and Akiri, respectively. The most exposed terrestrial reference organisms are lichen and bryophytes. In all cases, the radio ecological risks are not likely to be discernible. This paper presents a pioneer data for ecological risk from ionizing contaminants due to mining activity in Nasarawa State, Nigeria. Its methodology could be adopted for future work on radioecology of mining.  相似文献   

8.
The radiation survey of the ambient environment was conducted using two gamma detectors, and the measurement results were used in the computation of the mean external radiation dose rate, mean-weighted dose rate and annual effective dose, which are 144 nGy h?1, 0.891 mSv y?1 and 178 μSv, respectively. A high-purity germanium detector was used to determine the activity concentrations of 232Th, 226Ra and 40K in soil samples. The results of the gamma spectrometry of the soil samples show radioactivity concentration ranges from 19±1 to 405±13 Bq kg?1 with a mean value of 137±5 Bq kg?1 for 232Th, from 21±2 to 268±9 Bq kg?1with a mean value of 78±3 Bq kg?1 for 226Ra and from 23±9 to 1268±58 Bq kg?1 with a mean value of 207±13 Bq kg?1 for 40K. Radium equivalent activity (Raeq) and external hazard index (Hex) were 290 Bq kg?1 and 0.784, respectively, which were safe for the population. The mean lifetime dose and lifetime cancer risk for each person living in the area with average lifetime (70 y) were 12.46 mSv and 7.25×10?4 Sv year, respectively. The results were compared with values given in United Nations Scientific Committee on the Effects of Atomic Radiation 2000.  相似文献   

9.
About 21 years after the Chernobyl accident, 137Cs and 40K activity concentration measurements using gamma-ray spectroscopy and elemental analysis using energy dispersive X-ray spectroscopy were performed in five different lichen species collected from the Giresun province of northeastern Turkey. Being a symbiosis of algae and fungi, lichens are mostly used for environmental measurements since the fungal partner is responsible for the uptake of necessary nutrients or harmful substances, such as heavy metals of radionuclides. The gamma activity results showed that 137Cs, an artificial radionuclide released from the Chernobyl power plant accident, is still eminent in the environment of the province. The mean activity concentrations of 137Cs and 40K ranged from 24 to 254 with the mean value of 102 Bq kg?1 and from 345 to 2103 with the mean value of 1143 Bq kg?1 in dry weight. The results of the elemental analyses showed potassium, calcium, titanium, iron, tin, and barium in different concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号