首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Perfluoromethyl Element Ligands. XLIII [1] Novel Synthetic Routes to Binuclear Complexes of the Type MM′(CO)8ER2X (M/M′ = Mn/Mn, Mn/Re, Re/Re; E = P, As; R = CF3, Me; X = Hal, ) Mn(CO)5I reacts with compounds of the type (CF3)2EAsMe2 (E = P, As) as with the symmetric E2(CF3)4 ligands in the first step with cleavage of the E‐As bond to yield the pro ducts (CO)5MnE(CF3)2 and Me2AsI. Reaction of the mononuclear complexes with excess of Mn(CO)5I leads in good yields to the known dinuclear compounds (CO)4Mn[E(CF3)2, I]Mn(CO)4 and CO. Me2AsI, the second product of the EAs cleavage, attacks the starting compound Mn(CO)5I giving cis‐Mn(CO)4I(AsMe2I) and CO. This result encouraged us to thoroughly investigate the preparation of cis‐M(CO)4X(EMe2Y) complexes with most of the possible combinations of M = Mn, Re; E = P, As and X, Y = Cl, Br, I. An alternative route to these compounds was opened by the cleavage of the dinuclear manganese or rhenium halides M2(CO)8X2 with the halophosphanes or ‐arsanes Me2EY. This route was found to be especially advantageous for the preparation of the rheniumcarbonyl precursors, since milder conditions than for the CO‐substitution in Re(CO)5X compounds are sufficient for the halogen‐bridged dinuclear complexes. Cis‐M(CO)4X(EMe2Y) complexes were used as precursors for the synthesis of novel homo‐ and heterodinuclear complexes of the type (CO)4M(EMe2, X)M′(CO)4 by reacting the EY function with transition metal carbonylates Kat[M′(CO)5] (Kat = Na, Bu4N, Ph4As). Thus the preparation of a wide range of complexes was possible, which before had been successfully prepared by the direct reaction of Mn2(CO)10 with Me2EX only in few cases, e. g. with Me2AsI. Spectroscopic investigations, using the CO valence frequencies and the 1H‐NMR data of the ligands EMe2Y or of the Me2E bridges, were applied to study the influence of the variables M, M′, E, X, Y and Kat on the reactivity of the mononuclear complexes and the bonding situation in both the mono‐ and the dinuclear systems. The new compounds were characterized by spectroscopic (IR, NMR, MS) and analytic methods (C, H).  相似文献   

2.
The pentacarbonylhalogene complexes [XM(CO)5] (M = Mn, Re; X = Cl, Br) ( 1a – 2b ) react with 2,2‐dimethylaziridine by thermally induced substitution reaction to give the neutral bis‐aziridine complexes [M(X)(CO)3Az2] (Az = N(H)C2H2Me2) ( 3a – 4b ). As a result of the X‐ray structure analyses, the metal atoms are octahedrally configurated in the facial arrangement; the intact three‐membered rings coordinate through their distorted tetrahedrally configurated N atoms. All compounds 3a – 4b are stable with respect to the directed thermal alkene elimination to give the corresponding nitrene complexes (CO)4(X)M=NH; their IR, 1H and 13C{1H} NMR, and MS spectra are reported and discussed.  相似文献   

3.
Phosphine Substituted Chelate Ligands. XVIII. Penta- and Tetracarbonylmetal Complexes of Chromium, Molybdenum, and Tungsten with Secondary and Tertiary Phosphinothioformamide Ligands Mono- and bidentately coordinated phosphinothioformamide complexes are obtained by photochemical substitution of the metal hexacarbonyls M(CO)6 (M ? Cr ( a ), Mo ( b ), W ( c )). The M(CO)5 · THF adducts react with secondary thioamides under exclusion of light to give the P-coordinate pentacarbonyl complexes [(CO)5MPPh2C(S)NHR1] (R1 ? Ph ( 1a – c ), Me ( 2a )). The photoreaction of M(CO)5 · THF with secondary and tertiary thioamides at low temperatures leads to the formation of the P, S-chelate complexes . The corresponding N-silylated complexes 6a – c (R1 ? Me3Si, R2 ? Ph) are obtained by direct photosubstitution of M(CO)6 in cyclohexane solution. The labile bis(thioformamide) complexes [(CO)4M(PPh2C(S)NHMe)2] ( 7a – c , cis-trans isomers) are synthesized in low yields according to the same procedure. The attempted alkylation of the chelate complexes 3a – c remains unsuccessful, whereas the secondary thioformamides react with n-BuLi/CH2Br2 to give the methylene bis(thioformirnidoesters) [Ph2PC(NR1)S]2CH2 (R1 ? Ph (8), Me ( 9 )) in quantitative yields.  相似文献   

4.
Abstract. The cyclopentadienyl‐substituted iron‐bismuth complexes [{Cp(CO)2Fe}BiCl2] ( 1 ), [{Cp(CO)2Fe}BiBr2] ( 2 ), [{Cp′′(CO)2Fe}BiBr2] ( 3 ) and [{Cp*(CO)2Fe}BiBr2] ( 4 ) were prepared with high yields starting from [Cpx(CO)2Fe]2 [Cpx = C5H5 (Cp), C5H3‐1, 3‐tBu2 (Cp′′), C5Me5 (Cp*)] and the corresponding bismuth halides. The single crystal X‐ray structure analyses of compounds 2 – 4 are reported. Comparison of their solubility demonstrates that the steric hindrance in this type of compounds is only slightly higher for compound 3 compared with compound 2 but significantly lower compared with the Cp* derivative 4 . Compounds 1 – 4 react with nucleophililic reagents such as KOtBu, NaOCH2CH2OCH3, and NaOSiMe3 as well as with water in the presence of an amine to give a mixture of [{Cpx(CO)2Fe}BiX] (X = Cl, Br) and [{Cpx(CO)2Fe}3Bi]. In case of a reaction with nBu4NCl and DMAP (dimethylaminopyridine) no such dismutation is observed. Instead the complexes [{Cp(CO)2Fe}BiBr2(DMAP)2] ( 5 ), [NnBu4]2[{{Cp(CO)2Fe}BiBr3}2] ( 6 ) and [NnBu4]2[{{Cp(CO)2Fe}BiCl3}2] ( 7 ) were isolated and characterized by single‐crystal X‐ray diffraction.  相似文献   

5.
N, N-bis(pyrazol-1-ylmethyl)aminomethane (bpam) and N, N-bis(3, 5-dimethylpyrazol-1-ylmethyl)aminomethane (bdmpam) reacted with M(CO)6 or M(CO)3(CH3CN)3 in acetonitrile to give respectively fac-(bpam)M(CO)3 and fac-(bdmpam)M(CO)3 in good yields (M=Cr, Mo, W). These complexes are characterized by elemental analysis, IR, and NMR and compared with the related polypyrazolylborate complexes of the group VI metal carbonyls.  相似文献   

6.
Reaction of tert -Butyl-phosphaalkyne with Molybdenum Complexes The reaction of tBuC≡P with [(CH3CN)3Mo(CO)3] leads to the complex [Mo(CO)4〈Mo(CO)24-P3CtBu){η4-P2(CtBu)2}〉] 1 as well as to the alkyne complexes [Mo(CO)4〈{P3(CtBu)2}{Mo(CO)2(CtBu)}{η3-P2(CtBu)2}〉] 2 and [Mo(CtBu){η4-P2(CtBu)2(CO)}{η5-P3(CtBu)2}] 3 . All compounds are characterized by X-ray structural analysis, by NMR- and IR spectroscopy and by mass spectrometry. In complex 1 a 1,3-diphosphacyclobutadiene and a 1,2,4-triphosphacyclobutadiene are connected by two molybdenum carbonyl centres. In 2 a 1,3-diphosphacyclobutadiene is π- and a novel 1,2,4-triphospholyl ligand is σ-bonded at two Mo centres. A characteristic feature of 3 besides a π co-ordinated 1,2,4-triphospholyl ligand is a 3,4-diphosphacyclopentadienone as ligand, formed via CO insertion during the cyclodimerisation of two phosphaalkynes.  相似文献   

7.
The reactions of [M(NO)(CO)4(ClAlCl3)] (M=Mo, W) with (iPr2PCH2CH2)2NH, (PNHP) at 90 °C afforded [M(NO)(CO)(PNHP)Cl] complexes (M=Mo, 1a ; W, 1b ). The treatment of compound 1a with KOtBu as a base at room temperature yielded the alkoxide complex [Mo(NO)(CO)(PNHP)(OtBu)] ( 2a ). In contrast, with the amide base Na[N(SiMe3)2], the PNHP ligand moieties in compounds 1a and 1b could be deprotonated at room temperature, thereby inducing dehydrochlorination into amido complexes [M(NO)(CO)(PNP)] (M=Mo, 3a ; W, 3b ; PNP=(iPr2PCH2CH2)2N)). Compounds 3a and 3b have pseudo‐trigonal‐bipyramidal geometries, in which the amido nitrogen atom is in the equatorial plane. At room temperature, compounds 3a and 3b were capable of adding dihydrogen, with heterolytic splitting, thereby forming pairs of isomeric amine‐hydride complexes [Mo(NO)(CO)H(PNHP)] ( 4a(cis) and 4a(trans) ) and [W(NO)(CO)H(PNHP)] ( 4b(cis) and 4b(trans) ; cis and trans correspond to the position of the H and NO groups). H2 approaches the Mo/W?N bond in compounds 3a , 3b from either the CO‐ligand side or from the NO‐ligand side. Compounds 4a(cis) and 4a(trans) were only found to be stable under a H2 atmosphere and could not be isolated. At 140 °C and 60 bar H2, compounds 3a and 3b catalyzed the hydrogenation of imines, thereby showing maximum turnover frequencies (TOFs) of 2912 and 1120 h?1, respectively, for the hydrogenation of N‐(4 ‐ methoxybenzylidene)aniline. A Hammett plot for various para‐substituted imines revealed linear correlations with a negative slope of ?3.69 for para substitution on the benzylidene side and a positive slope of 0.68 for para substitution on the aniline side. Kinetics analysis revealed the initial rate of the hydrogenation reactions to be first order in c(cat.) and zeroth order in c(imine). Deuterium kinetic isotope effect (DKIE) experiments furnished a low kH/kD value (1.28), which supported a Noyori‐type metal–ligand bifunctional mechanism with H2 addition as the rate‐limiting step.  相似文献   

8.
Carbonyl–iridium half-sandwich compounds, Cp*Ir(CO)(EPh)2 (E=S, Se), were prepared by the photo-induced reaction of Cp*Ir(CO)2 with the diphenyl dichalcogenides, E2Ph2, and used as neutral chelating ligands in carbonylmetal complexes such as Cp*Ir(CO)(μ-EPh)2[Cr(CO)4], Cp*Ir(CO)(μ-EPh)2[Mo(CO)4] and Cp*Ir(CO)(μ-EPh)2[Fe(CO)3], respectively. A trimethylphosphane–iridium analogue, Cp*Ir(PMe3)(μ-SeMe)2[Cr(CO)4], was also obtained. The new heterodimetallic complexes were characterized by IR and NMR spectroscopy, and the molecular geometry of Cp*Ir(CO)(μ-SePh)2[Mo(CO)4] has been determined by a single crystal X-ray structure analysis. According to the long Ir…Mo distance (395.3(1) Å), direct metal–metal interactions appear to be absent.  相似文献   

9.
Investigations of P–P Bond Formation Reactions in the Coordination Sphere of Transition Metals The reaction of [CpW(CO)3] with PCl3 leads to the transition metal substituted dichlorphosphines [{CpW(CO)3}PCl2] ( 1 ) and [{Cp(CO)3W}PCl2{WCl(CO)2Cp}] ( 2 ). The X‐ray structure of 2 reveals the Lewis acid/base character of this compound. Reactions of 1 and [Cr(CO)5Cp*PCl2], respectively, with metalates of the type [M(CO)3Cp′] (M′ = Mo, W; Cp′ = η5‐C5H4tBu) afford the cyclo‐P3 complexes [(η3‐P3)MCp′(CO)3] ( 3 ) (M = W) and ( 4 ) (M = Mo) and the compounds [(μ,η2‐P2{Cr(CO)5}2){Mo(CO)2Cp}2] ( 5 ) and [{μ3‐PW(CO)3Cp′}{W(CO)2Cp′}2] ( 6 ), respectively. Complex 6 possesses a planar homoleptic W3P moiety revealing delocalised multiple bonds within the W2P‐subunit. Reducing [(CO)5WPCl3] with magnesium leads to the formation of the phosphinidene complex [{(CO)5W}2PCl], whereas the reduction of [CpW(CO)3PCl2] ( 1 ) with magnesium yields the cyclo‐P3 complex 3 together with P4 phosphorus.  相似文献   

10.
Regioselective Ring Opening Reactions of Unifold Unsaturated Triangular Cluster Complexes [M2Rh(μ‐PR2)(μ‐CO)2(CO)8] (M2 = Re2, Mn2; R = Cy, Ph; M2 = MnRe, R = Ph) with Diphosphanes Equimolar amounts of the triangular title compounds and chelates of the type (Ph2P)2Z (Z = CH2, DPPM ; C=CH2, EPP ) react in thf solution at –40 to –20 °C under release of the labile terminal carbonyl ligand attached to the rhodium atom in good yields (70–90%) to ring‐opened unifold unsaturated complexes [MRh(μ‐PR2)(CO)4M(DPPM bzw. EPP)(μ‐CO)2(CO)3] (DPPM: M2 = Re2, R = Cy 1 , Ph 2 ; Mn2, Cy 5 , Ph 6 ; MnRe, Cy 7 . EPP: M2 = Re2, R = Cy 8 ; Mn2, Cy 10 ). Complexes 1 , 2 and 8 react subsequently under minor uptake of carbon monoxide and formation of the valence saturated complexes [ReRh(μ‐PR2)(CO)4M(DPPM bzw. EPP) (CO)6] (DPPM: R = Cy 3 , Ph 4 . EPP: R = Cy 9 ). Separate experiments ascertained that the regioselective ring opening at the M–M‐edge of the title compounds is limited to reactions with diphosphanes chelates with only one chain member and that the preparation of the unsaturated complexes demands relatively good donor ability of both P atoms. As examples for both types of compounds the molecular structures of 8 and 3 have been determined from single crystal X‐ray structure analysis. Additionally all new compounds are identified by means of ν(CO)IR, 1H‐ and 31P‐NMR data. This includes complexes with a modified chain member in 1 and 5 which, after deprotonation reaction to carbanionic intermediates, could be trapped with [PPh3Au]+ cations as rac‐[MRh(μ‐PR2)(CO)4M((Ph2P)2CHAuPPh3)(μ‐CO)2(CO)3] (M2 = Re 17 , Mn 18 ) and products rac‐[MRh(μ‐PR2)(CO)4M((Ph2P)2CHCH2R)(μ‐CO)2(CO)3] (M2 = Re, R = Ph 19 , n‐Bu 21 , Me 23 ; Mn, Ph 20 , n‐Bu 22 , Me 24 ) which result from Michael‐type addition reactions of 8 or 10 with strong nucleophiles LiR.  相似文献   

11.
The reactions of [Co2(CO)8] with E(SiMe3)2 (E = Se, Te) in CH2Cl2 result in the formation of the compounds [Co4Se2(CO)10]> ( 1 ) and [Co4Te2(CO)11] ( 2 ), respectively. Both cluster complexes have similar molecular structures in which the cobalt atoms form four‐membered rings with μ4‐bridging chalcogen atoms (Se and Te) above and below the plane of the metal atoms and the carbonyl ligands as either terminal or μ2‐bridging ligands. DFT‐calculations for both compounds have been carried out in order to obtain some more information about their electronic distribution. In the presence of the phosphine Ph2PC≡CPPh2 (dppa), the reaction of [Co2(CO)8] with Se(SiMe3)2 leads to the formation of [Co8Se4(CO)16(μ‐dppa)2] ( 3 ). During the reaction two molecules of [Co2(CO)8] have been added to the acetylene groups of the dppa ligands, whilst the remaining cobalt atoms coordinate to the phosphorus atoms of the phosphine. In this compounds the selenium atoms act as μ3‐ligands, bridging the metal atoms bonded to the phosphorus with those bonded to the acetylene groups.  相似文献   

12.
Reaction of bis(2‐pyridylmethyl) ether with [Mo(CO)3­(Me­CN)3] in MeCN gives the title compound, [Mo(C12H12‐N2O)(CO)3], (I), as a yellow crystalline product. Compound (I) has been characterized by 1H NMR and IR spectroscopy, and single‐crystal X‐ray crystallography. In contrast with other examples of low‐valent early transition metal complexes of ethers, the ether linkage of (I) appears relatively inert. Nevertheless, the weak donor property of the ether ligand is evidenced by a trans effect manifested as a short Mo—CO bond length for the carbonyl ligand trans to the ether ligand.  相似文献   

13.
Carbonyl Metal Compounds with Polydentate Cyclic Ligands. I. Pentacarbonyl Complexes of s-Trithiane and Related Compounds The complexes (RCHS)nM(CO)5 (R = H, CH3, n = 3; R = H, n = 4; M = Cr, Mo, W) were prepared from the tetrahydrofuran pentacarbonyl metal compounds and the respective ligands. The Cotton-Kraihanzel force constants of these complexes indicate the sulfur ligands to be slightly more basic than triphenylphosphine. The trimethyltrithiane complexes (R = CH3, n = 3) exhibit rapid intramolecular exchange of the M(CO)5-group along the three coordination centers of the ligand.  相似文献   

14.
New complexes cis-[M(CO)4-DABRd] (M = Cr(I), Mo(II) and fac-[M(CO)3-SAT] (M = Cr(III), Mo(IV)) have been synthesized by the photochemical reactions of cis-[(η4-NBD)M(CO)4] (NBD is norbornadiene; M=Cr, Mo) with 5-(4-dimethylaminobenzylidene) rhodanine (DABRd) and salicylidene-3-amino-1,2,4-triazole (SAT) ligands and characterized by elemental analysis, FT-IR and 1H NMR spectroscopy, and mass spectrometry. The spectroscopic studies show that the DABRd ligand acts as a bidentate ligand coordinating via both NH-(S)C=S sulfur donor atoms in I and II and SAT ligand behaves as a tridentate ligand coordinating via its all imine nitrogen-C=N-donor atoms in III and IV to the metal center. The article was submitted by the authors in English.  相似文献   

15.
A variety of mono- and bis[Fe(CO)34-diene)] complex with alky, CH2OH, CHO, COCH3, COOR, and CN substituents on the 1,3-diene system have been synthesized. Dienes with a (Z)-configuration terminal Me group show steric inhibition of metal complexation resulting in lower yields and formation of tetracarbonyl(η2-diene) and tricarbonyl(η4-heterodiene) complexes as additional products. Regioselective attack by C-nucleophiles at the carbonyl C-atoms of the functional group with or without concomitant 1,3 mogration of the Fe(CO)3 group was used to synthesize polyenes and isoprenoid building blocks as mono- or dinucliar Fe(CO)3 complexes. Wittig-Horner-type reactions of Fe(co)3-complexed synthons result in sterospecific formation of (E)-configurated olefins. The 1H-, 13C- and 57Fe-NMR spectra of olefinic and allylic organoiron complexes are reported, H,H,C,H, and C,C coupling constants have been evaluated and are analyzed in terms of the geometry of the coordinated diene. The results are corroborated by the crystal structure of tricarbonyl[3–6-η-((E)-6-methyl-3,5-heptadiene-2-one)]iron( 34 ) which shows an unusual distortion of the (CH3)2C = group, The 57Fe-NMR chemical shifts extend over the ranges of 0–600 ppm for [Fe(CO)34-diene)] complexes, 780–1710 ppm for [Fe(CO)43-allyl)] [BF4] and [FeX(CO)34-allyl)] complexes, and 1270–1690 ppm for [Fe(CO)34-enone)] complexes, relative to Fe(CO)5.  相似文献   

16.
Three ruthenium(II) hydrazone complexes of composition [RuCl(CO)(PPh3)2L] were synthesized from the reactions of [RuHCl(CO)(PPh3)3] with hydrazones derived from 4‐methoxybenzhydrazide and 4‐formylbenzoic acid (HL1), 4‐methylbenzaldehyde (HL2) and 2‐bromobenzaldehyde (HL3). The synthesized hydrazone ligands and their metal complexes were characterized using elemental analysis and infrared, UV–visible, NMR (1H, 13C and 31P) and mass spectral techniques. The hydrazone ligands act as bidentate ones, with O and N as the donor sites, and are predominantly found in the enol form in all the complexes studied. The molecular structures of the ligands HL1, HL2 and HL3 were determined using single‐crystal X‐ray diffraction. The interactions of the ligands and the complexes with calf thymus DNA were studied using absorption spectroscopy and cyclic voltammetry which revealed that the compounds could interact with calf thymus DNA through intercalation. The DNA cleavage activity of the complexes was evaluated using a gel electrophoresis assay which revealed that the complexes act as good DNA cleavage agents. In addition, all the complexes were subjected to antioxidant assay, which showed that they all possess significant scavenging activity against 2,2‐diphenyl‐2‐picrylhydrazyl, OH and NO radicals. The in vitro cytotoxic effect of the complexes examined on cancerous cell lines (HeLa and MCF‐7) showed that the complexes exhibit substantial anticancer activity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Syntheses and Structures of (Et4N)2[Re(CO)3(NCS)3] and (Et4N)[Re(CO)2Br4] Rhenium(I) and rhenium(III) carbonyl complexes can easily be prepared by ligand exchange reactions starting from (Et4N)2[Re(CO)3Br3]. Using nonoxidizing reagents the facial ReI(CO)3 unit remains and only the bromo ligands are exchanged. Following this procedure, (Et4N)2[Re(CO)3(NCS)3] can be obtained in high yield and purity using trimethylsilylisothiocyanate. The compound crystallizes in the monoclinic space group P21/n, a = 18.442(5), b = 17.724(3), c = 18.668(5) Å, β = 92.54(1)°, Z = 8. The NCS? ligands are coordinated via nitrogen. The reaction of [Re(CO)3Br3]2? with Br2 yields the rhenium(III) anion [Re(CO)2Br4]?. The tetraethylammonium salt of this complex crystallizes in the noncentrosymmetric, orthorhombic space group Cmc21, a = 8.311(1), b = 25.480(6), c = 8.624(1) Å, Z = 4. The carbonyl ligands are positioned in a cis arrangement. Their strong trans influence causes a lengthening of the Re? Br bond distances by at least 0.05 Å.  相似文献   

18.
The reactions between K5Bi4, [(C6H6)Cr(CO)3] or [(C7H8)Mo(CO)3], and [2.2.2]crypt in liquid ammonia yielded the compounds [K([2.2.2]crypt)]33‐Bi3)M(CO)3 · 10NH3 (M = Cr, Mo), which crystallize isostructurally in P21/n. Both contain an 18 valence electron piano‐stool complex with a η3‐coordinated Bi3‐ring ligand. The Bi–Bi distances range from 2.9560(5) to 2.9867(3) Å and are slightly shorter than known Bi–Bi single bonds but longer than Bi–Bi double bonds. The newly found compounds complete the family of similar complexes with E3‐ring ligands (E = P‐Bi).  相似文献   

19.
Carbonyl Monoolefin Derivatives of the Group VI Transition Metals. I. Tetracarbonyl Phosphine Olefin Complexes Monoolefin complexes cis-M(CO)4(PR3)(olefin) (M ? Cr, Mo, W; R ? Et, Bu, Pri, Ph; olefin ? maleic anhydride, dimethyl maleate, dimethyl fumarate, bis(trimethylsilyl) fumarate, ethylene) are obtained from the ionic compounds Et4N[R3PM(CO)4Cl] either via ethanol or acetonitrile derivatives M(CO)4(PR3)L, or directly in a two phase system. The olefins are displaced by Lewis-bases such as amines or phosphines under mild conditions.  相似文献   

20.
Perfluormethyl-Element-Ligands. XL. Chromium and Tungsten Pentacarbonyl Complexes of Bis(trifluoromethyl)phosphanes of the Type (F3C)2PX′ (X′ = H, F, Cl, Br, I, NEt2) The complexes M(CO)5P(CF3)2X′ (M = Cr, W; X′ = H, F, Cl, Br, I) are obtained in preparative amounts (yields between 15 and 42%) by reacting the ligands (F3C)2PX′ with the adducts “M(CO)5CH2Cl2”, photochemically generated from M(CO)6 in methylene chloride. The corresponding derivatives of the aminophosphane Et2NP(CF3)2 can be produced in good yields (60–75%) using the THF complexes M(CO)5THF as precursors. The spectroscopic data (MS, IR, NMR) of the new compounds are reported. The CO valence frequencies v(CO) and the coordination shifts Δδ prove the high π-acidity of the ligands (F3C)2PX′.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号