首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In the framework of the investigation of enrichment processes of nitrate in groundwater of the Kalahari of Botswana near Serowe, recharge processes were investigated. The thick unsaturated zone extending to up to 100 m of mostly unconsolidated sediments and very low recharge rates pose a serious challenge to study solute transport related to infiltration and recharge processes, as this extends past the conventional depths of soil scientific investigations and is difficult to describe using evidence from the groundwater due to the limitations imposed by available tracers. To determine the link between nitrate in the vadose zone and in the uppermost groundwater, sediment from the vadose zone was sampled up to a depth of 15–20 m (in one case also to 65 m) on several sites with natural vegetation in the research area. Among other parameters, sediment and water were analysed to determine chloride and nitrate concentration depth profiles. Using the chloride mass balance method, an estimation of groundwater infiltration rates produced values of 0.2–4 mm a?1. The uncertainty of these values is, however, high. Because of the extreme thickness of the vadose zone, the travel time in the unsaturated zone might reach extreme values of up to 500 years and more. For investigations using groundwater, we applied the chlorofluorocarbons CFC-113, CFC-12, sulphur hexafluoride (SF6) and tritium to identify potential recharge, and found indications for some advective transport of the CFCs and SF6, which we accounted for as constituting potential active localised recharge. In our contribution, we show the potential and limitations of the applied methods to determine groundwater recharge and coupled solute transport in semi-arid settings, and compare travel time ranges derived from soil science and groundwater investigations.  相似文献   

2.
ABSTRACT

The Lake Chad Basin (LCB) is an endorheic transboundary catchment highly vulnerable to drought. For effective groundwater management, recharge areas need identification and replenishment quantification. At present, little research exploring unsaturated zone water flow processes and groundwater recharge are available. In this study, 12 vertical soil profiles were analysed for stable water isotopes and chloride concentration to estimate evaporation and groundwater renewal. Most δ18O and δ2H isotope profiles reveal typical arid environment patterns, with maximum enrichment at depths between 2.5 and 20?cm and depletion towards the surface (atmospheric influence) and depth (mixing and diffusion). Average annual dry season evaporation rates in Salamat and Waza Logone range from 5 to 30?mm, in Bahr el Ghazal and Northern Lake Chad from 14 to 23?mm. According to the chloride mass balance (CMB), the average annual recharge rate is estimated between 3 and 163?mm in Salamat and Waza Logone and less than 1 mm in Bahr el Ghazal and Northern Lake Chad. Based on the CMB results, potential recharge sites were identified, while estimated soil evaporation corresponds to plant water use at the initial growing stage, which is an important component in irrigation water management.  相似文献   

3.
Abstract

Using secondary ion mass spectrometry (SIMS) the penetration of deuterium into Si(100) substrates as a result of exposure to deuterium low pressure rf discharges has been determined as a function of exposure time, thermal contact of the Si wafers to the substrate electrode, substrate doping, and discharge pressure. For undoped (100) single crystal Si exposed without intentional heating to a 25 m torr D2 plasma for 1 min the deuterium concentration in the near-surface region (0—30 nm) approaches 1021 at.cm?3. It drops off with depth, but is still greater than 1017 at.cm.?3 at a silicon depth of 200 nm. The large penetration depth, the observation that lowering the substrate temperature decreases the rate of deuterium uptake, and the dependence of deuterium penetration on the substrate doping type indicate that hydrogen diffusion is of primary importance. The presence of a 50 nm thick oxide layer on the Si substrate during plasma exposure lowers the deuterium near-surface concentration in the Si substrate by about three orders of magnitude, while the presence of 10 nm of thermal oxide reduces the deuterium uptake only insignificantly. Heavily B and As doped polycrystalline Si show less deuterium penetration, while undoped polycrystalline Si shows more deuterium uptake than undoped single crystal Si for the same plasma treatment.  相似文献   

4.
The linkage between precipitation and recharge is still poorly understood in the Central America region. This study focuses on stable isotopic composition in precipitation and groundwater in the northern mountainous region of the Central Valley of Costa Rica. During the dry season, rainfall samples corresponded to enriched events with high deuterium excess. By mid-May, the Intertropical Convergence Zone poses over Costa Rica resulting in a depletion of 18O/16O and 2H/H ratios. A parsimonious four-variable regression model (r2?=?0.52) was able to predict daily δ18O in precipitation. Air mass back trajectories indicated a combination of Caribbean Sea and Pacific Ocean sources, which is clearly depicted in groundwater isoscape. Aquifers relying on Pacific-originated recharge exhibited a more depleted pattern, whereas recharge areas relying on Caribbean parental moisture showed an enrichment trend. These results can be used to enhance modelling efforts in Central America where scarcity of long-term data limits water resources management plans.  相似文献   

5.
Elemental and isotopic pattern of n(87Sr)/n(86Sr) and δ88Sr/86SrSRM987 were used to characterise groundwater and recharge of saline ponds in a clastic aquifer in East Austria. Therefore, shallow, artesian and thermal groundwaters of the investigated aquifer along with rainfall and rivers were analysed using (MC) ICP-MS. The n(87Sr)/n(86Sr) ratio and elemental pattern changed with aquifer depth as a result of progressing bedrock leaching and dissolution with increasing groundwater residence time. The n(87Sr)/n(86Sr) ratio of shallow groundwater below saline ponds of 0.71019?±?0.00044 was significantly different from thermal groundwater of 0.71205?±?0.00035 (U, k?=?2). In contrast to previous theories, this result suggested no recharge of saline ponds by upwelling paleo-seawater. Isotope pattern deconvolution revealed that rainfall accounted to about 60% of the n(87Sr)/n(86Sr) ratio of shallow groundwater below saline ponds. The δ88Sr/86SrSRM987 values of groundwater decreased from about 0.25 ‰ in most shallow, to predominantly negative values of about –0.24 ‰ in artesian groundwater. This result indicated leaching and dissolution of weathered minerals. In turn, the δ88Sr/86SrSRM987 of deep thermal groundwater showed positive values of about 0.12 ‰, which suggested removal of 86Sr from solution by carbonate precipitation. These results highlight the potential of δ88Sr/86SrSRM987 signature as an additional geochemical tracer.  相似文献   

6.
Based on the monthly δ18O value measured over a hydrology period in precipitation, runoff of five tributaries and the main lake of the Poyang Lake Basin, combined with hydrological and meteorological data, the characteristics of δ18O in precipitation (δ18OPPT) and runoff (δ18OSUR) are discussed. The δ18OPPT and δ18OSUR values range from?2.75 to?14.12 ‰ (annual mean value=?7.13 ‰ ) and from?2.30 to?8.56 ‰, respectively. The seasonal variation of δ18OPPT is controlled by the air mass circulation in this region, which is dominated by the Asian summer monsoon and the Siberian High during winter. The correlation between the wet seasonal averages of δ18OSUR in runoff of the rivers and δ18OPPT of precipitation at the corresponding stations shows that in the Poyang Lake catchment area the river water consists of 23% direct runoff (precipitation) and 77% base flow (shallow groundwater). This high proportion of groundwater in the river runoff points to the prevalence of wetland conditions in the Poyang Lake catchment during rainy season. Considering the oxygen isotopic composition of the main body of Poyang Lake, no isotopic enrichment relative to river inflow was found during the rainy season with maximum expansion of the lake. Thus, evaporation causing isotopic enrichment is a minor component of the lake water balance in the rainy period. During dry season, a slight isotopic enrichment has been observed, which suggests a certain evaporative loss of lake water in that period.  相似文献   

7.
8.
Naturally existing tritium in groundwater was applied as a tracer to evaluate the natural recharge of the Chingshui geothermal reservoir. The residence time (or, age) of Chingshui geothermal water was first determined with tritium data at 15.2 and 11.3 year using the plug flow and dispersive model, respectively. The annual natural recharge was then estimated by combining the use of the residence time and the fluid-in-place of the Chingshui geothermal reservoir. The natural recharge for Chingshui geothermal reservoir was estimated at 5.0 × 105 and 6.7 × 105 m3 year?1 using the plug flow and dispersive model, respectively. Chingshui geothermal water is largely from a fractured zone in the Jentse Member of the Miocene Lushan Formation. The dispersive model more adequately represents the fracture flow system than the simple plug flow model.  相似文献   

9.
To understand the behaviour of nuclear waste glass in groundwater, borosilicate glasses were placed in simulated groundwater for more than 200 days. The composition of the simulated groundwater was similar to that of the groundwater in Beishan (a potential nuclear waste site). The pH value of groundwater was adjusted to 7.5, and the ratio of the surface area of glass to the volume of the solution (SA/V) was set to 10?m?1. Solutions and bulk glasses were characterised to obtain the elemental behaviour and surface morphology of the glass/solution interface, which was named the alteration layer. The mean thicknesses of the alteration layer were 5.16?±?0.11?µm and 11.67?±?0.28?µm at 70°C and 90°C, respectively. A thicker alteration layer was attributed to the lower surface activation energy of the glass and a high ion exchange between K+ and Na+ in the interface between the glass surface and the solution. For the elemental behaviour, mobile species B and Na were depleted, while K and Ca from the solution were enriched in the alteration layer due to ion exchange. Network species Si decreased in the layer, leading to the corrosion of the backbone of the glass; however, species Al increased, which implied that some [SiO4] units were partially replaced by [AlO4] units. In this work, glass in groundwater suffered much more intense corrosion than that in de-ionised water.  相似文献   

10.
Pulse labelling experiments provide a common tool to study short-term processes in the plant–soil system and investigate below-ground carbon allocation as well as the coupling of soil CO2 efflux to photosynthesis. During the first hours after pulse labelling, the measured isotopic signal of soil CO2 efflux is a combination of both physical tracer diffusion into and out of the soil as well as biological tracer release via root and microbial respiration. Neglecting physical back-diffusion can lead to misinterpretation regarding time lags between photosynthesis and soil CO2 efflux in grassland or any ecosystem type where the above-ground plant parts cannot be labelled in gas-tight chambers separated from the soil. We studied the effects of physical 13CO2 tracer back-diffusion in pulse labelling experiments in grassland, focusing on the isotopic signature of soil CO2 efflux. Having accounted for back-diffusion, the estimated time lag for first tracer appearance in soil CO2 efflux changed from 0 to 1.81±0.56 h (mean±SD) and the time lag for maximum tracer appearance from 2.67±0.39 to 9.63±3.32 h (mean±SD). Thus, time lags were considerably longer when physical tracer diffusion was considered. Using these time lags after accounting for physical back-diffusion, high nocturnal soil CO2 efflux rates could be related to daytime rates of gross primary productivity (R2=0.84). Moreover, pronounced diurnal patterns in the δ13C of soil CO2 efflux were found during the decline of the tracer over 3 weeks. Possible mechanisms include diurnal changes in the relative contributions of autotrophic and heterotrophic soil respiration as well as their respective δ13C values. Thus, after accounting for physical back-diffusion, we were able to quantify biological time lags in the coupling of photosynthesis and soil CO2 efflux in grassland at the diurnal time scale.  相似文献   

11.
The KLo?KSo regeneration on deuterium has been measured at the 70 GeV Serpukhov accelerator in a momentum region of 18–50 GeVc. The measurements were performed by means of a 3 m long liquid deuterium target and an on-line spectrometer. The preliminary results on the energy dependence of the modulus and phase of the transmission regeneration amplitude are reported.  相似文献   

12.
Groundwater discharge into an open pit lignite mining lake was investigated using radon-222 as a naturally occurring environmental tracer. The chosen study site was a meromictic lake, i.e., a water body that is divided horizontally into two separate layers – the upper mixolimnion (with seasonal mixing) and the lower monimolimnion (without seasonal mixing). For the estimation of groundwater discharge rates into the lake, a simple box model including all radon sinks and sources related to each layer was applied. Two field investigations were performed. During the October campaign, the total groundwater discharge into the lake was found to be 18.9 and 0.7 m3 d?1 for the mixolimnion and monimolimnion, respectively. During the December campaign, the groundwater discharge into the mixolimnion was 15.0 m3 d?1, whereas no discharge at all was observed into the monimolimnion. Based on the given water volumes, the residence time of lake water was 5.3 years for the monimolimnion and varies between 0.9 and 1.1 years for the mixolimnion. The investigation confirmed radon to be a useful environmental tracer for groundwater and surface water interactions in meromictic lake environments.  相似文献   

13.
Data from a 10-month monitoring study during 2007 in the Everglades ecosystem provide insight into the variation of δ18O, δD, and ion chemistry in surface water and shallow groundwater. Surface waters are sensitive to dilution from rainfall and input from external sources. Shallow groundwater, on the other hand, remains geochemically stable during the year. Surface water input from canals derived from draining agricultural areas to the north and east of the Everglades is evident in the ion data. δ18O and δD values in shallow groundwater remain near the mean of?2.4 and?12 ‰, respectively. 18O and D values are enriched in surface water compared with shallow groundwater and fluctuate in sync with those measured in rainfall. The local meteoric water line (LMWL) for precipitation is in close agreement with the global meteoric water line; however, the local evaporation line (LEL) for surface water and shallow groundwater is δ D=5.6 δ18O+1.5, a sign that these waters have experienced evaporation. The intercept of the LMWL and LEL indicates that the primary recharge to the Everglades is tropical cyclones or fronts. δ deuterium to δ18O excess (Dex values) generally reveal two moisture sources for precipitation, a maritime source during the fall and winter (D ex>10 ‰) and a continental-influenced source (D ex<10 ‰) in the spring and summer.  相似文献   

14.
The effects occurring on the surface of tungsten under irradiation with fast ions with an energy in the megaelectrolvolt range and with high fluxes of hydrogen (deuterium) plasma are considered. These effects are radiation damage of the surface layer of the material, its erosion and deuterium retention in it. Irradiation with helium 4He2+ (3.2–4.0 MeV) and carbon 12C3+ (10 MeV) ions is performed using a cyclotron at the National Research Center Kurchatov Institute. The thickness of the damaged layer is 3.5–6 μm. The irradiated samples are exposed to steady-state deuterium plasma using a LENTA linear plasma facility to reach a plasma ion fluence of 1021–1022 cm?2. Tungsten erosion and modification of the structure of the damaged layer are analyzed at a plasma-ion energy of 250 eV. Deuterium retention in the damaged layer is studied by elastic recoil detection analysis. The deuterium concentration and its penetration depth into the material are measured. The data obtained for different kinds of fast ions used in the work are compared.  相似文献   

15.
When conducting 13CO2 plant–soil pulse labelling experiments, tracer material might cause unwanted side effects which potentially affect δ13C measurements of soil respiration (δ13CSR) and the subsequent data interpretation. First, when the soil matrix is not isolated from the atmosphere, contamination of the soil matrix with tracer material occurs leading to a physical back-diffusion from soil pores. Second, when using canopy chambers continuously, 13CO2 is permanently re-introduced into the atmosphere due to leaf respiration which then aids re-assimilation of tracer material by the canopy. Accordingly, two climate chamber experiments on European beech saplings (Fagus sylvatica L.) were conducted to evaluate the influence of soil matrix 13CO2 contamination and canopy recycling on soil 13CO2 efflux during 13CO2 plant–soil pulse labelling experiments. For this purpose, a combined soil/canopy chamber system was developed which separates soil and canopy compartments in order to (a) prevent diffusion of 13C tracer into the soil chamber during a 13CO2 canopy pulse labelling and (b) study stable isotope processes in soil and canopy individually and independently. In combination with laser spectrometry measuring CO2 isotopologue mixing ratios at a rate of 1 Hz, we were able to measure δ13C in canopy and soil at very high temporal resolution. For the soil matrix contamination experiment, 13CO2 was applied to bare soil, canopy only or, simultaneously, to soil and canopy of the beech trees. The obtained δ13CSR fluxes from the different treatments were then compared with respect to label re-appearance, first peak time and magnitude. By determining the δ13CSR decay of physical 13CO2 back-diffusion from bare soils (contamination), it was possible to separate biological and physical components in δ13CSR of a combined flux of both. A second pulse labelling experiment, with chambers permanently enclosing the canopy, revealed that 13CO2 recycling at canopy level had no effect on δ13CSR dynamics.  相似文献   

16.
Temperate ecosystems are susceptible to drought events. The effect of a severe drought (104 days) followed by irrigation on the plant C uptake, its assimilation and input of C in soil were examined using a triple 13CO2 pulse-chase labelling experiment in model grassland and heathland ecosystems. First 13CO2 pulse at day 0 of the experiment revealed much higher 13C tracer uptake for shoots, roots and soil compared to the second pulse (day 44), where all plants showed significantly lower 13C tracer uptake. After the third 13CO2 pulse (day 70), very low 13C uptake in shoots led to a negligible allocation of 13C into roots and soil. During irrigation after the severe drought, the 13C tracer that was allocated in plant tissues during the second and third pulse labelling was re-allocated in roots and soil, as soon as the irrigation started. This re-allocation was higher and longer lasting in heathland compared to grassland ecosystems.  相似文献   

17.
Due to the ability of stable water isotopes to characterize the origin of water and connected processes of groundwater recharge, we used the isotope variations of hydrogen and oxygen in different water sources for assessing the recharge process in the Dhofar region. δ18O and δ2H of precipitation, spring water, and groundwater cover a range from ?10 to +2 and from ?70 to +7?‰ (vs Vienna Standard Mean Ocean Water), respectively, and correlate in a linear relationship close to the Global Meteoric Water Line. No obvious evaporation processes are detected. A clear signal of the recent precipitation is given by the annual monsoon. The monsoon signal is confirmed by several springs existing in the south at the foot of the Dhofar mountains and sources at Gogub above 450?m and Tawi Atir at 650?m above sea level. They occur here first in the form of water intercepted by trees as stemflow and throughflow. The isotope signature of groundwater in the Dhofar mountains reflects the climatic conditions at the time of recharge and the lithological features of the limestone matrix. To the north, the isotope patterns of the groundwater are continuously depleted from the monsoon signal along the outcropping aquifer D (Lower Umm Er Radhuma). Here, a more negative signature towards the wells in the Najd desert region was observed. Cyclone water that flooded wadis in the Dhofar region occasionally, as observed in November 2011, falls isotopically into the same range as we observed in the fossil groundwater. Taking into account the different sources of precipitation and groundwater and thus a clear distinction of the isotopic composition of the water sources, we conclude a recharge process divided into a southward and a northward component in the Dhofar region.  相似文献   

18.
The absolute coverage (θ) of deuterium adsorbed on Pt(111) in the ranges 180< T<440 K and 5 × 10?6 < P < 5 × 10?2 Pa D2 has been determined by nuclear microanalysis using the D(3He, p)4He reaction. From these data, the isosteric heat of adsorption (Ea) has been determined to be 67 ± 7 kJ mol?1 at θ ? 0.3. This heat of adsorption yields values of the pre-exponential for desorption (10?5 to 10?2 cm2 atom?1 s?1) that lie much closer to the normal range for a second order process than those determined from previous isosteric heat measurements. The Ea versus θ relationship indicates that the adsorbed D atoms are mobile and that there is a repulsive interaction of 6–8 kJ mol?1 at nearest neighbour distances. At 300 K the coverage decreases to ? 0.05 monolayer (? 8 × 1013 D atoms cm?2) as P→ 0, apparently invalidating a recent model of site exchange in the adsorbed layer.  相似文献   

19.
Stable isotopes of water (δ2H, δ18O) and δ13CTIC were used as a tool to trace the recharge processes, natural carbon (organic and inorganic) source and dynamics in the aquifers of the central Gangetic basin, India. Stable isotope (δ2H, δ18O) record of groundwater (n?=?105) revealed that the groundwater of Piedmont was recharged by meteoric origin before evaporation, while aquifers of the older and younger alluvium were recharged by water that had undergone evaporation loss. River Ganges and its tributaries passing through this area have very little contribution in recharging while ponds play no role in the recharging of adjacent aquifers. The connectivity of shallow aquifers of aquitard formation (comprised of clay/sandy clay with thin patches of fine grey sand), i.e. 25–60?m below ground level (bgl) with the main upper aquifer (at a depth of >120?m?bgl) was found to be higher in older and younger alluvium. Negative values of δ13CTIC (median ?9.6 ‰; range ?13.2 to ?5.4 ‰) and high TIC (median 35?mM; range 31–46?mM) coupled with low TOC (median 1.35?mg/L; range 0.99–1.77?mg/L) indicated acceleration in microbial activity in the younger alluvium, especially in the active floodplain of river Ganges and its proximity.  相似文献   

20.
Ratios of stable isotopes of hydrogen and oxygen (2H/1H and 18O/16O) in river waters were measured to investigate the hydrological pathway of the Xijiang River, Southwest China. The δ2H and δ18O values of river waters exhibit significant spatial and temporal variations and the isotopic compositions vary with elevation, temperature and precipitation of the recharge area. Spatially, δ18O values of river waters from high mountain areas are lower than those from the lower reaches of the Xijiang River due to lower temperature and higher elevation for the recharge area. However, both 2H and 18O are enriched differently in river waters from the middle reaches during the high flow season, depending on the season and degree of anthropogenic disturbances (e.g. water impoundments). In contrast, deuterium excess (d-excess) values of waters from the middle reaches are substantially lower than those from the upper and lower reaches, suggesting that river waters may be resided in the reservoir and evaporation increases in the middle reaches of the Xijiang River.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号