首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In spite of increasing concern regarding the effects of greenhouse gases, atmospheric CO2 concentration continues to increase, with current levels now as high as 370 ppm. This elevated CO2 concentration influences not only atmospheric characteristics, but also ground vegetation: leaf structure, chemical composition and carbon-isotope composition are all affected. It was with this in mind that we investigated the viability of coupling an isotopic and a botanical approach to determine leaf interaction in relation to atmospheric pollution levels. Results show that, among the botanical indexes considered, the most reliable proxy of atmospheric CO2 levels would appear to be leaf mass per area (LMA), which increases with pollution. Our study also shows that LMA determination coupled with carbon-isotope compositions is a sensitive tracer of the local pollution-level variations.  相似文献   

2.
Recent climate studies have proven that both temperature and CO2 content of the earth's atmosphere followed a regular 100,000-year cycle of change and that they are closely correlated. Moreover, the observed increase of CO2 in the atmosphere exceeds the predicted values extrapolated from historical data. Other than industrialization and rapid urbanization, geo-natural hazards such as leakage from hydrocarbon reservoirs and spontaneous combustion of coal contribute a considerable amount of CO2 to the atmosphere. Several researchers have studied the possibilities and reliabilities of atmospheric CO2 retrieval by the point-based method (nearly accurate but much localized) and globally (wider observation but many uncertainties). Radiative transfer codes, such as FASCOD (Fast Atmospheric Signature Code) with the HITRAN (High-Resolution Transmission) spectral database can simulate atmospheric transmission and path radiance with customized gas composition (CO2, water vapour, CO, etc.) and concentration in order to understand the phenomena in a specific wavelength region. In the present study, a number of atmospheric models were constructed with different CO2 concentrations (ppmv) with a combination of water vapour and other atmospheric gases such as CO, CH4, N2O, SO2, etc., to find out the interference patterns of these gases over CO2 absorption bands. The transmission features of these gas combinations were analysed by partial least-squares regression models. These models show that the most suitable CO2 absorption bands are located around 2 μm, such as 1.998 and 2.001 μm. The spectral information derived from different concentrations of CO2 can be fitted in multivariate models to predict the CO2 concentration from spectral information in a controlled environment. Furthermore, the present study explores the sensitivity of some available remote sensing sensors in variable CO2 concentrations for use in real world.  相似文献   

3.
Stable (i.e. non-radioactive) carbon-isotope composition (δ13C) in fuels has been extensively used as an indicator of the processes leading to the generation of their parent crude-oil. With the example of those used in Paris (France), this preliminary study isotopically characterizes fuels and combustibles, as well as the isotopic relations existing with their combustion by-products, i.e. gases (CO2) and particles (bulk carbon). Results show that δ13C in fuels is clearly related to their physical state, with natural gas being strongly depleted in 13C while coal yields the highest δ13C, and liquid fuels display intermediate values. This relation is also valid for combustion gases, although δ13C values of combustion particles form a homogeneous range within which no clear distinction is observed. Combustion processes are accompanied by carbon-isotope fractionation (noted Δ13C) resulting from the combustion being incomplete. Carbon-isotope fractionation is strictly negative (Δ13C = ?1.3‰) during the formation of combustion gases, but generally positive in particle formation even if values close to zero are observed. Using simple mixing equations for describing the closed system formed by fuel, CO2 and carbonaceous particles, we discuss the carbon budget for spark-ignition (unleaded gasoline) and diesel engines. Stable carbon isotopes corroborate the already-proved superior efficiency of diesel combustion mode compared with spark ignition, as carbon is preferentially transformed into CO2.  相似文献   

4.
We have used laser photoacoustic gas analysis to study the CO2 content sorbed by the capillary porous system of annual rings in cross-sectional disks of some conifers. The measurement results showed that in most cases, the CO2 content in gas samples extracted by the vacuum method from annual rings in the disks is higher than the CO2 content in atmospheric air. In the disks, we observe an annual trend in the CO2 concentration, correlating in a number of cases with a rise in atmospheric CO2. The annual trend in the average value of the CO2 concentration change sign from positive to negative. We hypothesize that the observed pattern for the annual distribution of CO2 in the disks is connected with a rise in atmospheric CO2 and a change in the concentration gradient between stem and atmospheric CO2. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 76, No. 3, pp. 477–480, May–June, 2009.  相似文献   

5.
Raman激光雷达是用于大气成分探测与特性研究的有效工具.介绍了中科院安徽光学精密机械研究所自行研制的一台用于测量低对流层大气CO2时空分布的Raman激光雷达系统,并进行了一系列观测实验和对比分析.系统选用波长355 nm的紫外激光作为光源,利用光子计数卡双通道采集大气中N2和CO2的Raman后向散射信号与Li-7500型H2O/CO2分析仪进行对比标定,通过反演获得了大气CO2水平与垂直方向时空分布廓线,并且获得了合肥地区大气边界层CO2的夜变化趋势.结果表明,大气CO2在空间的分布相对均匀,Raman激光雷达与CO2分析仪变化趋势一致性较好,能够对大气CO2时空分布进行有效、连续的观测.  相似文献   

6.
Summary In this report we introduce the infrared lidar-dial apparatus developed at the University of Calabria. It has been carried out as a tool in the investigation of both the atmospheric pollution of trace gases and other atmospheric parameters as water vapour. The general scheme of the station is described, as well as the performances of the home-made CO2 laser sources. Finally preliminary measurements of average concentration of ozone and water vapour over a range of about 3 km are presented and discussed in the report.  相似文献   

7.
This article presents the results of measurements of the isotopic composition and concentration of atmospheric carbon dioxide, performed on air samples from Kraków (Southern Poland) in different seasons of the year. A simple isotope mass balance model has been applied to determine the contributions of different sources of CO2 to the urban atmosphere of Kraków city: the latitudinal/regional background, biospheric contributions and anthropogenic emissions. The calculations show that during the summer and early autumn the dominant contribution to local CO2 peaks is the biosphere, making up to 20% of atmospheric CO2 during the nocturnal temperature inversion in the lower troposphere. During early spring and winter, anthropogenic emissions are the main local source.  相似文献   

8.
A continuous wave, single frequency and continuously tunable optical parametric oscillator is used in combination with photoacoustic spectroscopy to detect trace emissions of CO2 from insects under atmospheric conditions. The optical parametric oscillator (OPO) contains a periodically poled lithium niobate crystal and is tunable over the 3.9 to 4.8 μm infrared wavelength region. With the strong rotational-vibrational absorption band of CO2 at 4.23 μm, it is possible to detect CO2 down to 7 parts per billion volume using 20 mW of the OPO beam. This detection sensitivity was achieved by adding 4% of SF6 gas to the atmospheric gas mixture to overcome the slow vibrational relaxation of the excited CO2 levels. The usefulness of this system is demonstrated by real-time measuring of the fluctuations of the CO2 concentration in the breath of a single ant (Lasius niger) and individual fruit flies (Drosophila melanogaster). PACS 42.65.Yj; 82.80.Kq; 42.62.Fi  相似文献   

9.
Numerical analysis of a multiwave path gas-analyzer, based on a NH3-laser pumped by CO2-laser radiation, is performed for model detection of concentrations of a series of molecular species such as NH3, HCN, phosgene, NHO3, CO2, and H2O. The potentialities of the gas analyzer and uncertainty of the gas concentration detection were estimated for a 4 km horizontal atmospheric path. The estimation took into account the absorption of laser radiation by the atmospheric aerosol and molecular gases under study and distortion of the laser beam due to atmospheric turbulence.  相似文献   

10.
探测大气中CO2的Raman激光雷达   总被引:1,自引:0,他引:1       下载免费PDF全文
基于大气激光后向散射光谱,研究和设计了探测大气CO2浓度的Raman激光雷达,其发射机采用Nd∶YAG激光的三倍频354.7nm作为工作波长,发射的单脉冲能量350mJ,重复频率20Hz;接收机采用了光电倍增管(量子效率25%)和光子计数器(计数速率200MHz),探测CO2的Raman散射371.66nm(频移1285cm-1)信号,(1小时累加)近地面2.5km以内信噪比不小于8.采用组合滤光片来抑制强的354.7nm Mie-Rayleigh后向散射和氧气375.4nm Raman后向散射对信号的严重干扰. 比较分别来自大气CO2和参考气体N2的Raman后向散射回波,可反演出大气中CO2的相对浓度. 关键词: 大气光学 激光雷达 Raman散射光谱 参考气体 Mie-Rayleigh散射  相似文献   

11.
Lidar (Light detection and ranging) system monitoring of the atmosphere is a novel and powerful technique tool. The Raman lidar is well established today as a leading research tool in the study of numerous important areas in the atmospheric sciences. In this paper, the principle of Raman lidar technique measurement CO2 concentration profile is presented and the errors caused by molecular and aerosol extinction for CO2 concentration profile measurement with Raman lidar are also presented. The standard atmosphere extinction profile and 'real-time' Hefei area extinction profile are used to conduct correction and the corresponding results are yielded. Simulation results with standard atmosphere mode correction indicate that the errors caused by molecule and aerosol extinction should be counted for the reason that they could reach about 8 ppm and 5 ppm respectively. The relative error caused by Hefei area extinction correction could reach about 6%. The errors caused by the two components extinction influence could produce significant changes for CO2 concentration profile and need to be counted in data processing which could improve the measurement accuracies.  相似文献   

12.
Concentrations of CO2 and O2 in the breathing hose and inside the mask of the diffusion respirator have been measured using an atomic emission spectrometer. The gas exchange system of this respirator efficiently, within 1 min, restores oxygen concentration in the inhaled air from 18.5 vol % to its atmospheric concentration (21 vol %) and carbon dioxide concentration from 2.9 vol % to a stationary concentration of ~0.12 vol %. In the optimal configuration of the respirator, CO2 concentration inside the mask during breath is 0.23 vol %. The time resolution of the method is 200 ms and the CO2 detection limit is 0.08 vol %.  相似文献   

13.
CO2 reforming of methane was studied over a bed of coal char in a fixed bed reactor at temperatures between 1073 and 1223 K and atmospheric pressure with a feed composition of CH4/CO2/N2 in the ratio of 1:1:8. Experimental results showed that the char was an effective catalyst for the production of syngas with a maximum H2/CO ratio of one. It was also found that high H2/CO ratios were favoured by low pressures and moderate to high temperatures. These results are supported by thermodynamic calculations. A mechanism of seven overall reactions was studied and three catalytic reactions of CH4 decomposition, char gasification and the Boudouard reaction was identified as being of major importance. The first reaction produces carbon and H2, the second consumes carbon, and the third (the Boudouard reaction) converts CO2 to CO while consuming carbon. Equilibrium calculations and experimental results showed that any water present reacts to form H2 and carbon oxides in the range of temperatures and pressures studied. Carbon deposition over the char bed is the major cause of deactivation. The rate of carbon formation depends on the kinetic balance between the surface reaction of the adsorbed hydrocarbons with oxygen containing species and the further dissociation of the hydrocarbon.  相似文献   

14.
The potential use of non-dispersive infrared spectroscopy for measuring δ13C in air is demonstrated. This technique has already been successfully established for breath test analyses in medical diagnostics, where the CO2 concentration ranges from 1 to 5 vol.% in the exhaled breath of vertebrates. For breath tests, the sensitivity and accuracy has been improved to reach a standard deviation of 0.2 ‰ (delta-value). Further adjustments were necessary to improve the sensitivity of the instrument at concentration levels typical of atmospheric air. The long-term stability is given by a standard deviation of 0.35 ‰ for CO2 concentrations of about 400 ppm with signal averaging over 60 s.  相似文献   

15.
The carbon-isotope selectivity in the multiphoton dissociation of CF3Br is studied in the collisional region of supersonic free jet. The isotopic abundance of12C and13C in C2F6 formed by recombination of the dissociation products is measured with a quadrupole mass spectrometer. An enrichmet factor of 9.4 is obtained for12C with the 9R(30)CO2 laser line while the factor of 6.9 is obtained for13C with the 9P(16) line.  相似文献   

16.
CO2 stable carbon isotopes are very attractive in environmental research to investigate both natural and anthropogenic carbon sources. Laser-based CO2 carbon isotope analysis provides continuous measurement at high temporal resolution and is a promising alternative to isotope ratio mass spectrometry (IRMS). We performed a thorough assessment of a commercially available CO2 Carbon Isotope Analyser (CCIA DLT-100, Los Gatos Research) that allows in situ measurement of δ 13C in CO2. Using a set of reference gases of known CO2 concentration and carbon isotopic composition, we evaluated the precision, long-term stability, temperature sensitivity and concentration dependence of the analyser. Despite good precision calculated from Allan variance (5.0 ppm for CO2 concentration, and 0.05 ‰ for δ 13C at 60 s averaging), real performances are altered by two main sources of error: temperature sensitivity and dependence of δ 13C on CO2 concentration. Data processing is required to correct for these errors. Following application of these corrections, we achieve an accuracy of 8.7 ppm for CO2 concentration and 1.3 ‰ for δ 13C, which is worse compared to mass spectrometry performance, but still allowing field applications. With this portable analyser we measured CO2 flux degassed from rock in an underground tunnel. The obtained carbon isotopic composition agrees with IRMS measurement, and can be used to identify the carbon source.  相似文献   

17.
Summary The attention paid to changes in atmospheric concentrations of greenhouse gases has recently increased, with particular regard to the relationships between variations of their annual trends and of their shorter-period fluctuations on the one hand, and some geophysical and biological natural processes (like atmospheric transport, volcanic eruptions, ENSO events, seasonal vegetation cycles, and so on) on the other hand. Careful analysis and interpretation of the above relationships, in fact, can often disclose unknown mechanisms acting on modulations of these gases and make it possible for us to better understand the contributions made to them by natural causes, contrasted with anthropogenic ones. This paper presents and discusses the results of a series of CO2 air concentration data, measured at Plateau Rosa (3480 m a.s.l.—Italian Western Alps) over a period of about four years, and correlated with atmospheric transport processes on synoptic scale. These results have shown the leading role played by some kinds of atmospheric circulation patterns in creating situations of not fully mixed air streams (and, as such, not representative of background conditions) and have also suggested a ?meteorological? selection scheme for CO2 data to be used in evaluating more reliable annual trends.  相似文献   

18.
For oxy-combustion with flue gas recirculation, as is commonly employed, it is recognized that elevated CO2 levels affect radiant transport, the heat capacity of the gas, and other gas transport properties. A topic of widespread speculation has concerned the effect of the CO2 gasification reaction with coal char on the char burning rate. To give clarity to the likely impact of this reaction on the oxy-fuel combustion of pulverized coal char, the Surface Kinetics in Porous Particles (SKIPPY) code was employed for a range of potential CO2 reaction rates for a high-volatile bituminous coal char particle (130 μm diameter) reacting in several O2 concentration environments. The effects of boundary layer chemistry are also examined in this analysis. Under oxygen-enriched conditions, boundary layer reactions (converting CO to CO2, with concomitant heat release) are shown to increase the char particle temperature and burning rate, while decreasing the O2 concentration at the particle surface. The CO2 gasification reaction acts to reduce the char particle temperature (because of the reaction endothermicity) and thereby reduces the rate of char oxidation. Interestingly, the presence of the CO2 gasification reaction increases the char conversion rate for combustion at low O2 concentrations, but decreases char conversion for combustion at high O2 concentrations. These calculations give new insight into the complexity of the effects from the CO2 gasification reaction and should help improve the understanding of experimentally measured oxy-fuel char combustion and burnout trends in the literature.  相似文献   

19.
A new detection method for ammonia in high concentration of CO2 and H2O is reported, which uses a wavelength modulated photoacoustic spectrometer based on a near-infrared tunable erbium-doped fiber laser in combination with an optical fiber amplifier. The multi-wavelength (1522.44 nm, 1522.94 nm and 1545.05 nm) photoacoustic signal measurement is established to detect multi-spectrum signal in samples. The problem of ammonia detection in high concentration of CO2 and H2O is resolved at atmospheric pressure. The minimum detection limit of 16 ppb (signal-to-noise ratio = 1) in simulated breath samples (5.3% CO2 and 6.2% H2O (100% relative humidity at 37°C)) is achieved.  相似文献   

20.
A diode laser spectrometer was used in the Groupe de Spectrométrie Moléculaire et Atmosphérique of Reims (France) to study CO2 line intensities, self-broadening coefficients and air-pressure-broadening coefficients near 2.063 μm. The spectral region ranging from 4843 to 4848 cm−1, which is suitable for the measurement of atmospheric carbon dioxide (CO2) mixing ratios was studied using a new generation-commercial diode laser from Nanoplus. Three lines of the (20°1)III←(0 0 0) band of CO2 have been studied. The results of intensity measurements and self-broadening coefficients are compared with previous determinations and available databases. Furthermore, the air-broadening coefficients for these transitions are also reported and analyzed. Finally, these new parameters are used for the measurement of atmospheric CO2 mixing ratio with the 2 μm heterodyne differential absorption Lidar from the Laboratoire de Météorologie Dynamique at Palaiseau (France). These new parameters demonstrate a dramatic improvement of the retrieved atmospheric CO2 concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号