首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Summary Magnetic susceptibility and Mössbauer spectroscopy measurements have been carried out on [FeIII(SAm)Cl2], and indicate an intermediate spin state for the ferric ion. The temperature-independent magnetic moment of (4.17±0.05) B, the quadrupole splitting=4.09 mm s–1 and isomer shift=0.133 mm s–1 are in agreement with such formulation. These studies, together with infrared data, are used to suggest a possible structure of the complex.  相似文献   

2.
About the Coprecipitation of FeIII and CuII with Bismuth Phosphate and Calcium Fluoride The mechanism of FeIII and CuII coprecipitation with BiPO4 and CaF2 as carriers from ammonium phosphate and ammonium fluoride solutions was investigated. Using the radioactive tracers 59Fe and 64Cu and by means of EPR measurements surface adsorption was shown to be main reason causing coprecipitation. Trace metals distribution was possible to be described by means of Henry and Freundlich isotherms. FeIII and CuII are coprecipitated with BiPO4 as counterions to excess phosphate species at the surface. Differences in the behaviour between these metals are of quantitative nature. CuII is coprecipitated with CaF2 as a counterion to excess F?, whereas FeIII adsorption takes place as FeF63? in competition with matrix fluoride.  相似文献   

3.
A disk‐shaped [FeIII7(Cl)(MeOH)63‐O)3(μ‐OMe)6 (PhCO2)6]Cl2 complex with C3 symmetry has been synthesised and characterised. The central tetrahedral FeIII is 0.733 Å above the almost co‐planar FeIII6 wheel, to which it is connected through three μ3‐oxide bridges. For this iron‐oxo core, the magnetic susceptibility analysis proposed a Heisenberg–Dirac–van Vleck (HDvV) mechanism that leads to an intermediate spin ground state of S=7/2 or 9/2. Within either of these ground state manifolds it is reasonable to expect spin frustration effects. The 57Fe Mössbauer (MS) analysis verifies that the central FeIII ion easily aligns its magnetic moment antiparallel to the externally applied field direction, whereas the other six peripheral FeIII ions keep their moments almost perpendicular to the field at stronger fields. This unusual canted spin structure reflects spin frustration. The small linewidths in the magnetic Mössbauer spectra of polycrystalline samples clearly suggest an isotropic exchange mechanism for realisation of this peculiar spin topology.  相似文献   

4.
Summary Titania-based photocatalytic materials were prepared by sol-gel method using Fe3+ and polyethyleneglycol (PEG600) as additives. Thermogravimetry (TG), differential thermal analysis (DTA) and evolved gas analysis (EGA) with MS detection were used to elucidate processes that take place during heating of Fe3+ containing titania gels. The microstructure development of the Fe2O3/TiO2 gel samples with and without PEG600 admixtures was characterized by emanation thermal analysis (ETA) under in situ heating in air. A mathematical model was used for the evaluation of ETA results. Surface area and porosity measurements of the samples dried at 120°C and the samples preheated for 1 h to 300 and 500°C were compared. From the XRD measurements it was confirmed that the crystallization of anatase took place after thermal heating up to 600°C.  相似文献   

5.
The synthesis and crystal structure (100 K) of the title compound, [Fe(C10H11BrN3OS)2]NO3·H2O, is reported. The asymmetric unit consists of an octahedral [FeIII(HL)2]+ cation, where HL? is H-5-Br-thsa-Et or 5-bromosalicylaldehyde 4-ethylthiosemicarbazonate(1?) {systematic name: 4-bromo-2-[(4-ethylthiosemicarbazidoidene)methyl]phenolate}, a nitrate anion and a noncoordinated water molecule. Each HL? ligand binds via the thione S, the imine N and the phenolate O atom, resulting in an FeIIIS2N2O2 chromophore. The ligands are orientated in two perpendicular planes, with the O and S atoms in cis and the N atoms in trans positions. This [Fe(HL)2](anion)·H2O compound contains the first known cationic FeIII entity containing two salicylaldehyde thiosemicarbazone derivatives. The FeIII ion is in the high-spin state at 100 K. In addition, a comparative IR spectroscopic study of the free ligand and the ferric complex is presented, demonstrating that such an analysis provides a quick identification of the degree of deprotonation and the coordination mode of the ligand in this class of metal compounds. The variable-temperature magnetic susceptibility measurements (5–320 K) are consistent with the presence of a high-spin FeIII ion with a zero-field splitting D = 0.439 (1) cm?1.  相似文献   

6.
The anionic iota carrageenan polysaccharide is enriched with FeII and FeIII by ion exchange against FeSO4 and FeCl3. With divalent iron, portions of polymer chains undergo a secondary structure transition from random coils to single helices. The single‐chain macromolecular conformations can be manipulated by an external magnetic field: upon exposure to 1.1 T, the helical portions exhibit 1.5‐fold stiffening and 1.1‐fold stretching, whereas the coil conformations respond much less as a result of lower contents of condensed iron ions. Along with the coil–helix transition, the trivalent iron triggers the formation of superstructures. The applicability of iron‐enriched iota carrageenan as functional ingredient for food fortification is tested by free Fe2+ and Fe3+ contents, respectively, with the most promising iota‐FeIII yielding 53 % of bound iron, which is due to the superstructures, where the ferric ions are chelated by the supramolecularly self‐assembled polymer host.  相似文献   

7.
Complexation of FeII and FeIII with azaheterocyclic ligands L (L = phen or bipy) were studied in the presence and in the absence of boron cluster anions [BnHn]2– (n = 10, 12). The reactions were carried out in air at room temperature in organic solvents and/or water. In all the solvents used, well known [FeL3]An (An = 2Cl or SO42–) ferrous complexes were formed from FeII salts. Composition of ferric complexes with L ligands depends on the nature of solvent: either dinuclear oxo‐iron(III) chlorides [L2ClFeIII–O–FeIIIL2Cl]Cl2 or ferric ferrates(III) [FeIIIL2Cl2][FeIIICl4], or [FeIIIL2Cl2][FeIIICl4L] were isolated from FeIII salts. Introduction of the closo‐borate anions to a Fe3+(or Fe2+)/L/solv. mixture stabilizes ferrous cationic complexes [FeL3]2+ in all the solvents used: only ferrous [FeL3][BnHn] (n = 10, 12) complexes were isolated from all the reaction mixtures in the presence of boron cluster anions.  相似文献   

8.
A mixed‐valence {MnII3MnIIIFeII2FeIII2} cyanide‐bridged molecular cube hosting a caesium cation, Cs?{Mn4Fe4}, was synthesized and structurally characterized by X‐ray diffraction. Cyclic‐voltammetry measurements show that its electronic state can be switched between five different redox states, which results in a remarkable electrochromic effect. Magnetic measurements on fresh samples point to the occurrence of a spin‐state change near room temperature, which could be ascribed to a metal‐to‐metal electron transfer converting the {FeII?CN?MnIII} pair into a {FeIII?CN?MnII} pair. This feature was only previously observed in the polymeric MnFe Prussian‐blue analogues (PBAs). Moreover, this novel switchable molecule proved to be soluble and stable in organic solvents, paving the way for its integration into advanced materials.  相似文献   

9.
Coordinatively unsaturated FeIII metal sites were successfully incorporated into the iconic MOF‐5 framework. This new structure, FeIIIiMOF‐5, is the first example of an interpenetrated MOF linked through intercalated metal ions. Structural characterization was performed with single‐crystal and powder XRD, followed by extensive analysis by spectroscopic methods and solid‐state NMR, which reveals the paramagnetic ion through its interaction with the framework. EPR and Mössbauer spectroscopy confirmed that the intercalated ions were indeed FeIII, whereas DFT calculations were employed to ascertain the unique pentacoordinate architecture around the FeIII ion. Interestingly, this is also the first crystallographic evidence of pentacoordinate ZnII within the MOF‐5 SBU. This new MOF structure displays the potential for metal‐site addition as a framework connector, thus creating further opportunity for the innovative development of new MOF materials.  相似文献   

10.
Nanostructured iron compounds as lithium‐ion‐battery anode material have attracted considerable attention with respect to improved electrochemical energy storage and excellent specific capacity, so lots of iron‐based composites have been developed. Herein, a novel composite composed of three‐dimensional Fe2N@C microspheres grown on reduced graphite oxide (denoted as Fe2N@C‐RGO) has been synthesized through a simple and effective technique assisted by a hydrothermal and subsequent heating treatment process. As the anode material for lithium‐ion batteries, the synthetic Fe2N@C‐RGO displayed excellent Li+‐ion storage performance with a considerable initial capacity of 847 mAh g?1, a superior cycle stability (a specific discharge capacity of 760 mAh g?1 remained after the 100th cycle), and an improved rate‐capability performance compared with those of the pure Fe2N and Fe2N‐RGO nanostructures. The good performance should be attributed to the existence of RGO layers that can facilitate to enhance the conductivity and shorten the lithium‐ion diffusion path; in addition, the carbon layer on the surface of Fe2N can avert the structure decay caused by the volume change during the lithiation/delithiation process. Moreover, in situ X‐ray absorption fine‐structure analysis demonstrated that the excellent performance can be attributed to the lack of any obvious change in the coordination geometry of Fe2N@C‐RGO during the charge/discharge processes.  相似文献   

11.
It is a challenge to reversibly switch both magnetism and polarity using light irradiation. Herein we report a linear Fe2Co complex, whereby interconversion between FeIIILS(μ‐CN)CoIIHS(μ‐NC)FeIIILS (LS=low‐spin, HS=high‐spin) and FeIIILS(μ‐CN)CoIIILS(μ‐NC)FeIILS linkages could be achieved upon heating and cooling, or alternating laser irradiation at 808 and 532 nm. The electron spin arrangement and charge distribution were simultaneously tuned accompanying bidirectional metal‐to‐metal charge transfer, providing switchable polarity and magnetism in the complex.  相似文献   

12.
The present study focuses on the formation and reactivity of hydroperoxo–iron(III) porphyrin complexes formed in the [FeIII(tpfpp)X]/H2O2/HOO? system (TPFPP=5,10,15,20‐tetrakis(pentafluorophenyl)‐21H,23H‐porphyrin; X=Cl? or CF3SO3?) in acetonitrile under basic conditions at ?15 °C. Depending on the selected reaction conditions and the active form of the catalyst, the formation of high‐spin [FeIII(tpfpp)(OOH)] and low‐spin [FeIII(tpfpp)(OH)(OOH)] could be observed with the application of a low‐temperature rapid‐scan UV/Vis spectroscopic technique. Axial ligation and the spin state of the iron(III) center control the mode of O? O bond cleavage in the corresponding hydroperoxo porphyrin species. A mechanistic changeover from homo‐ to heterolytic O? O bond cleavage is observed for high‐ [FeIII(tpfpp)(OOH)] and low‐spin [FeIII(tpfpp)(OH)(OOH)] complexes, respectively. In contrast to other iron(III) hydroperoxo complexes with electron‐rich porphyrin ligands, electron‐deficient [FeIII(tpfpp)(OH)(OOH)] was stable under relatively mild conditions and could therefore be investigated directly in the oxygenation reactions of selected organic substrates. The very low reactivity of [FeIII(tpfpp)(OH)(OOH)] towards organic substrates implied that the ferric hydroperoxo intermediate must be a very sluggish oxidant compared with the iron(IV)–oxo porphyrin π‐cation radical intermediate in the catalytic oxygenation reactions of cytochrome P450.  相似文献   

13.
Photochemical properties of FeIII Chloro Complex Systems in Some Non-aqueous Solvents The results on the relationship between the composition of FeIII chloro complexes in acetone, methanol, their mixtures resp., and their photochemical properties are presented. It has been found that the presence of FeII ions in irradiated systems is observed till a certain time. This time as well as the values of Phi; FeII depend on the ratio of [FeIII]:[Cl?] and the composition of the solvent mixture. Photochemical properties of some FeIII chloro complexes are discussed.  相似文献   

14.
Ferrichrome, a fungal siderophore that is also utilized by some bacterial species, was studied with liquid secondary ion mass spectrometry (LSIMS) and matrix-assisted laser desorption ionixation (MALDI) mass spectrometry. A strong ionic signal corresponding to a FeIII complex was observed with LSIMS in the positive ion mode. Switching the polarity of the mass spectrometer did not necessarily result in reduction of ferric ion, although certain conditions led to appearance of a FeII complex signal as well. The results of the structural studies of the metal ion-cyclic peptide complex with collisionally induced dissociation allowed unambiguous identification of the chelation sites. The action of the siderophore on FeIII was studied by in vitro chelation of ferric ion (from ferric citrate) by the iron-free ferrichrome. Effective chelation of ferric ion was compared to actions of the iron-free ferrichrome on other metal ions. Unlike LSIMS, desorption with MALDI did not form selectively molecular ions of intact ferrichrome: the spectra contained abundant peaks corresponding to the cyclic peptide itself and its nonspecific association with alkali metal ions.  相似文献   

15.
Iron gallates with iron in the oxidation states Fe2+ and Fe3+ were prepared and studied by Mössbauer spectroscopy, X‐ray diffraction, and IR spectroscopy. FeIII 3,4,5‐trihydroxybenzoate (gallate) Fe(C7O5H4) · 2H2O, whose structure was first determined by Wunderlich, was obtained by the reaction of gallic acid and metallic iron or by oxidation of the FeII gallate, which was obtained by the reaction of ferrous sulfate with 3,4,5‐trihydroxybezoic acid (gallic acid) under anoxic conditions. Trials to reproduce the hydrothermal preparation method of Feller and Cheetham show that the result depends crucially on the free gas volume in the reaction vessel. If there is no free volume one obtains the same FeIII gallate as in the other preparation methods. With a large free volume another compound was found to form whose composition and structure could not be determined. It could be specified only by Mössbauer spectroscopy. FeIII gallate, the FeII gallate, and the new phase show magnetic ordering at liquid helium temperature.  相似文献   

16.
A record anisotropy barrier (319 cm?1) for all d‐f complexes was observed for a unique FeII‐DyIII‐FeII single‐molecule magnet (SMM), which possesses two asymmetric and distorted FeII ions and one quasi‐D5h DyIII ion. The frozen magnetization of the DyIII ion leads to the decreased FeII relaxation rates evident in the Mössbauer spectrum. Ab initio calculations suggest that tunneling is interrupted effectively thanks to the exchange doublets.  相似文献   

17.
The synthesis and thermal and spectroscopic studies of a new CoII–FeIII heteropolynuclear coordination compound are presented. The in situ oxidation product of ethylene glycol plays the role of ligand. Under specific working conditions, the reaction of ethylene glycol with FeIII and CoII nitrates in dilute acid solutions occurs with the oxidation of the former to glyoxylic acid, coordinated to the CoII and FeIII cations as glyoxylate anion (C2H2O4 2?), with simultaneous isolation of the heteropolynuclear coordination compound. In order to separate and identify the ligand, the synthesized coordination compound, having the composition formula Co4Fe10(L)9(OH)20(H2O)32·14H2O, where L is the glyoxylate anion, has been treated with R–H cationite (Purolite C-100). After the retention of the metal cations, the resulting glyoxylic acid was confirmed by measuring its physical constants, by specific reactions and through spectroscopic methods. The synthesized coordination compound was characterized by physical–chemical analysis, electronic spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD) and thermal analysis. Cobalt ferrite impurified with ferric oxide was obtained following the thermal decomposition of CoII–FeIII polyhydroxoglyoxylate. The oxides obtained through thermolysis were studied by FTIR, XRD, scanning electron microscopy (SEM) and elemental analysis.  相似文献   

18.
The heteronuclear complex [Fe4Li2(O)2(Piv)10(H2O)2] (1, Piv is the pivalic acid anion) was obtained by refluxing FeIII pivalates with LiI pivalates in toluene and isolated as the 1?PhCH3 solvate with a toluene molecule. According to X-ray diffraction data, complex 1 contains the {Fe4Li2O2} core. The Mössbauer spectroscopy data indicate that the core comprises para magnetic FeIII ions in the high-spin state located in the symmetric octahedral environment of oxygen atoms. Thermolysis of 1 studied by simultaneous thermal analysis demonstrated thermal stability of the complex up to 225 °С. The main end product of thermolysis at 600 °С is the mixed oxide LiFe5O8.  相似文献   

19.
The cyanide building block [FeIII(pzphen)(CN)4] and its four lanthanide complexes [{FeIII(pzphen)(CN)4}2LnIII(H2O)5(DMF)3] · (NO3) · 2(H2O) · (CH3CN) [Ln = Nd ( 1 ), Sm ( 2 ), DMF = dimethyl formamide] and [{FeIII(pzphen)(CN)4}2LnIII(NO3)(H2O)2(DMF)2](CH3CN) [Ln = Gd ( 3 ), Dy ( 4 )] were synthesized and structurally characterized by single‐crystal X‐ray diffraction. Compounds 1 and 2 are ionic salts with two [FeIII(pzphen)(CN)4] cations and one LnIII ion, but compounds 3 and 4 are cyano‐bridged FeIIILnIII heterometallic 3d‐4f complexes exhibiting a trinuclear structure in the same conditions. Magnetic studies show that compound 3 is antiferromagnetic between the central FeIII and GdIII atoms. Furthermore, the trinuclear cyano‐bridged FeIII2DyIII compound 4 displays no single‐molecular magnets (SMMs) behavior by the alternating current magnetic susceptibility measurements.  相似文献   

20.
Non‐heme (L)FeIII and (L)FeIII‐O‐FeIII(L) complexes (L=1,1‐di(pyridin‐2‐yl)‐N,N‐bis(pyridin‐2‐ylmethyl)ethan‐1‐amine) underwent reduction under irradiation to the FeII state with concomitant oxidation of methanol to methanal, without the need for a secondary photosensitizer. Spectroscopic and DFT studies support a mechanism in which irradiation results in charge‐transfer excitation of a FeIII?μ‐O?FeIII complex to generate [(L)FeIV=O]2+ (observed transiently during irradiation in acetonitrile), and an equivalent of (L)FeII. Under aerobic conditions, irradiation accelerates reoxidation from the FeII to the FeIII state with O2, thus closing the cycle of methanol oxidation to methanal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号