首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract

Spring wheat plants were grown in split-root containers and labelled with 15N by fertilizing one compartment of the container with 15NH4 15NO3 (95 at.-% 15N exc.). After the harvest, approx. 90% of the 15N incorporated by the plants were found in the shoots and 3% in the roots; approx. 7% had been released into the soil of the unlabelled compartment. The 15N in the soil of the unlabelled compartment was extracted with KCl and hydrolysed with HCl. Approx. 60% of the 15N was found in the hydrolysable organic N pool of the soil and 9% in the fraction of the soluble and exchangeable inorganic nitrogen.  相似文献   

2.
The variation of the natural 15N abundance is often used to evaluate the origin of nitrogen or the pathways of N input into ecosystems. We tried to use this approach to assess the main input pathways of nitrogen into the sand dune area of the north-western Negev Desert (Israel). The following two pathways are the main sources for nitrogen input into the system:
  1. Biological fixation of atmospheric nitrogen by cyanobacteria present in biological crusts and by N2-fixing vascular plants (e.g. the shrub Retama raetam);

  2. Atmospheric input of nitrogen by wet deposition with rainfall, dry deposition of dust containing N compounds, and gaseous deposition.

Samples were taken from selected environmental compartments such as biological crusts, sand underneath these crusts (down to a depth of 90?cm), N2-fixing and non-N2-fixing plants, atmospheric bulk deposition as well as soil from arable land north of the sandy area in three field campaigns in March 1998, 1999 and 2000. The δ15N values measured were in the following ranges: grass ?2.5‰ to +1.5‰; R. reatam: +0.5‰ to +4.5‰; non-N2-fixing shrubs +1‰ to +7‰; sand beneath the biological crusts +4‰ to +20‰ (soil depth 2–90?cm); and arable land to the north up to 10‰. Thus, the natural 15N abundance of the different N pools varies significantly. Accordingly, it should be feasible to assess different input pathways from the various 15N abundances of nitrogen. For example, the biological N fixation rates of the Fabaceae shrub R. reatam from the 15N abundances measured were calculated to be 46–86% of biomass N derived from the atmosphere. The biological crusts themselves generally show slight negative 15N values (?3‰ to ?0.5‰), which can be explained by biological N fixation. However, areas with a high share of lichens, which are unable to fix atmospheric nitrogen, show very negative values down to ?10‰. The atmospheric N bulk deposition, which amounts to 1.9–3.8?kg?N/ha?yr, has a 15N abundance between 4.4‰ and 11.6‰ and is likely to be caused by dust from the arable land to the north. Thus, it cannot be responsible for the very negative values of lichens measured either. There must be an additional N input from the atmosphere with negative δ15N values, e.g. gaseous N forms (NO x , NH3). To explain these conflicting findings, detailed information is still needed on the wet, particulate and gaseous atmospheric deposition of nitrogen.  相似文献   

3.
Abstract

The translocation of root borne N compounds to different distances from the roots was studied by use of rectangular pots with three separated soil zones. Wheat plants were grown for 28 days (4 leaf stage) and subsequently pulse labelled by exposure to 15 ppm 15NH3 (generated from (15NH4)2SO4 with 95 at.-% 15N exc.) every other day with the rooting medium sealed from the atmosphere. Six pulses were applied in total.

The plants assimilated 65% of the label offered. The final 15N enrichment in the shoots was approx. 13 at.-% exc. and in the roots approx. 5 at.-% exc. These abundances were high enough to detect traces of 15N in soil approximately 1 cm distant from the roots. Most of the 15N recovered was retained in the shoots (about 90%), 5% were present in the roots and another 5% had been released into the rhizosphere. Considering the 15N released, 62% were found in the central root zone, 26% in the adjacent layer and 12% in the outer zone.  相似文献   

4.
The experimental results obtained for 15N separation by Spindel-Taylor [1] method, in a laboratory exchange column [2] are presented. The influence of the auxiliary water flow and of the nitric acid flow-rate (0.6–2.6 ml/cm2 min) on the 15N separation has been stuided. All the experimental points were obtained in unsteady state, thus giving information about the rate of the steady state achievement.  相似文献   

5.

In order to identify natural nitrogen isotope variations of biologically important amino acids four derivatization reactions (t-butylmethylsilylation, esterification with subsequent trifluoroacetylation, acetylation and pivaloylation) were tested with standard mixtures of 17 proteinogenic amino acids and plant (moss) samples using GC-C-IRMS. The possible fractionation of the nitrogen isotopes, caused for instance by the formation of multiple reaction products, was investigated. For biological samples, the esterification of the amino acids with subsequent trifluoroacetylation is recommended for nitrogen isotope ratio analysis. A sample preparation technique is described for the isotope ratio mass spectrometric analysis of amino acids from the non-protein (NPN) fraction of terrestrial moss. 14N/15N ratios from moss (Scleropodium spec.) samples from different anthropogenically polluted areas were studied with respect to ecotoxicologal bioindication.  相似文献   

6.
Abstract

The phosphonitrilic hexamides (PNH) [15N6] hexamino-phosphatriazine and hexaminophospha-[15N3] triazine were synthesized. Vegetation experiments showed that PNH has a favourable effect on the maize growth. Also the results demonstrated that the major part of PNH is mineralized during the following days. This process diminishes after 60 days. The total N-fertilizer uptake is about 46%, 29% of which came from amino-N and 17% from cyclic N, respectively. PNH behaved as a slow releasing N-fertilizer.  相似文献   

7.
Abstract

In the 1950s Hauck introduced a special version of the 15N dilution technique (15N flux method) for the determination of N losses from the soil by denitrification. Although this method is very useful and reliable its application has been rather infrequent up to now. This is mainly due to the need to measure the m/z 30 in addition to the usually measured m/z 28 and 29 for dinitrogen, because the 15N in the enriched air sample taken from an enclosure (cover box) at the soil surface is nonrandom. The signal from the m/z 30 is very low and difficult to measure with sufficient precision because other species (e.g. NO) also having the m/z 30 often interfere with its measurement. In this study the accuracy and precision of an easy to use CF-IRMS with sample batch operation to measure the ratio 30/28 was investigated. The relative standard deviation (RSD = precision) from natural abundance up to 2 at.% was always <1%. After correction of the mass ratio 30/28 (R30), by means of a formula obtained by linear regression of theoretical R30 against measured R30, the accuracy of the abundance calculated from this corrected R30 was very high. From the achieved precision and assuming a cover box height of 10 cm (headspace volume of 7 1), and a collection time of 2 h, a limit of detection for N2 losses by denitrification equivalent to 16 g N/ha*d or 6 kg N/ha*a can be estimated. The performance of the 15N dilution method using the equipment and procedure described is demonstrated by means of results from an incubation experiment with [15N]nitrate-amended soils.  相似文献   

8.
减少叶面滞尘对茶树叶片水分有效光谱信息提取的干扰,有利于建立更加稳健的茶树叶片水分高光谱估算模型。以“舒茶早”为研究对象,通过田间随机采集鲜叶样品,测定叶片原始光谱反射率、含水量以及滞尘率。比较分析滞尘对茶树叶片原始光谱的影响,分别基于归一化计算与比值计算方法构建新波段植被指数,并利用相关系数法筛选叶片水分含量相关性最高的新波段植被指数,结合相对变率分析获取滞尘对叶片水分估算影响不敏感的待选指数。通过分析不同滞尘条件下新建植被指数和已有水分指数与滞尘的响应关系,筛选出滞尘影响下茶树叶片水分估算的最优植被指数,最终构建茶树叶片水分估算的高精度模型。结果表明:(1)位于711~1 378 nm波段范围的叶片光谱反射率受滞尘影响呈现显著降低的趋势,随着滞尘率增大光谱反射率减小,且无尘叶片反射率与有尘状态反射率具有明显聚类现象,相同状态下的不同叶片反射率差异性极显著。(2)新波段植被指数、已有水分指数与茶树叶片含水量之间的相关性以及基于该指数构建的茶树叶片水分估算模型的精度,在滞尘影响下均呈现明显的下降趋势。(3)在滞尘混合状态下,以1 298和1 325 nm为中心波段的新建比值植被指数对滞尘敏感性最低,且与叶片含水量相关性高,为最优植被指数,其建立的茶树叶片水分高光谱估算模型具有较高的预测精度(y=0.245x-0.241,R2=0.854,RMSE=0.001),并且实测值与预测值具有较好的一致性。因此,该研究可为茶树的水分精细化管理提供依据,并可为基于高光谱信息构建复杂环境条件下的水分估算高精度模型提供新思路。  相似文献   

9.
Investigations were carried out on Vigna unguiculata L. Walp. to estimate the distribution and utilization of 15N in different organs after stem injection during vegetative, flowering and pod filling stage. During flowering effects of water deficit were also examined. In well watered plants, within 4 days after injection, 65% of 15N accumulated in leaves. This was drastically reduced to 42% by water deficit. 15N accumulation in stems increased under water deficit. The translocation of 15N from the stem base to roots were not altered by water deficit. During pod filling 62% of recovered 15N in the plants had accumulated in seeds, 24% in leaves and 11% in stems within 4 days, whereas the uptake of nitrogen in pod walls and roots remained low (2%). These results demonstrate that the method of injecting very small quantities (1 mg/plant) of 15N into the stem base allows an exact and detailed quantitative assessment of N translocation/distribution with regard to different organs, different growth stages and different treatments.  相似文献   

10.
Abstract

The standard method for determining the 15N abundance of total dissolved nitrogen (TDN) in aqueous samples (e.g., soil leachate, sewage, urine) is currently Kjeldahl digestion followed by steam distillation or diffusion to isolate the ammonium, and then 15N measurement using IRMS. However, this technique is both time-consuming and laborious. One way of overcoming these disadvantages could be to couple a TOC analyser to determine the TDN with a sufficient quadrupole MS to determine the 15N abundance. The highTOC analyser (Elementar Analysensysteme Hanau, Germany), which catalytically oxidises the sample's total nitrogen with a high, constant yield to nitrogen monoxide (NO), appeared particularly suitable. The quadrupole-MS ESD 100 (InProcess Instruments Bremen, Germany) proved to be a suitable mass spectrometer for the 15N determination of NO. This combination of instruments was found to provide a workable method in numerous measurements of standard and actual samples. The detection limit concerning the N amount required per analysis is 2 μg, corresponding to an N concentration of 0.7mg/l in a maximum sample volume of 3ml. Depending on the N concentration, 15N abundances starting from 0.5 at.% can be measured with the required precision of better than 3% (simple standard deviation). For example, measuring the abundance of 0.5 at.% requires about 50 μg N, whereas for 1 at.% or more only about 5 μg N is needed per analysis.  相似文献   

11.
The precision of the 15N-emission and that of the 15N-balance methods was evaluated and both methods were compared in a denitrification experiment. 15N-analysis was performed with an isotope ratio mass spectrometer which was coupled to an elemental analyzer. The measuring sensitivity in soil and gas analysis was tested by analyzing 15N-standards. The detection limit for gas samples with two different procedures of 15N-gas analysis was δ15N = (4.5 ± 1.0)‰ and (0.5 ± 0.05)‰, respectively. The error in measurement was 19% and 12% respectively. 15N-analysis of a 15N-labelled soil (4.15 ppm 15N) resulted in a CV of 1.32%. The measurements had to be calibrated with soil standards because the 15N-values showed a continuous downward fluctuation in a range of 10–20% within several days, when only acetanilid was used for calibration. Mean 15N-losses which were determined with both methods during the denitrification experiment were in good agreement. The precision of the 15N-emission method was adequate in all variants of the experiment. The precision of the 15N-balance method however was unsatisfactory at low 15N-losses (0.2–2% of added 15N).  相似文献   

12.
采用TOC/TN法测定了环境水样中的总氮。结果表明:其线性范围为0-20mg/L时,具有良好的线性关系,精密度RSD小于2%,对方法的回收率作了试验,所得结果在85.3%—99.1%之间。  相似文献   

13.
Abstract

The [15N]methacetin urine test for assessing disturbances of the cytochrome P450-aided oxygenation of xenobiotics in the human liver has been approved in several environmental health studies. A recent longitudinal study of kindergarten children near chemical and mining companies undergoing fundamental restructuring showed high, seasonally fluctuating SO2 burden which was well correlated with alterations in the mean liver states of the children. At one point the correlation disappeared, together with indications of large amounts of chlorinated compounds overflowing locally at nighttime. This was finally proven by analyzing urine samples from the children for trichloroacetic acid (TCA). Chlorinated ethanes and ethenes—the precursors of TCA—seemed to dominate the air pollution and to affect the hepatic detoxification capacity. We concluded that the methacetin liver function test reflects multicomponent exposure, including acute monopolization by a dominant pollutant for a time.  相似文献   

14.
Abstract

The 15N fractionation in the thermal decompostion of nitrous oxide (N2O) of natural isotopic composition has been investigated in quartz reaction vessel in the temperature interval 888–1073K. The formulas relating the observed experimentally 15N fractionations with the primary 15N kinetic isotope effect, (k 14/k 15)p for 14N15N16O, and secondary 15N kinetic isotope effect, (k 14/k 15)s for 15N14N16O, have been derived. The experimentally estimated 15N kinetic isotope effects have been compared with the primary and secondary 15N kinetic isotope effects calculated with the absolute rate theory formulations applied to linear three atom molecules. A good agreement was found for the primary 15N kinetic isotope effect, (k 14/k 15)p, in the temperature interval 888–1007K. But at 1073K the decompositions of N2O, accompanied by NO (nitric oxide) formation proceed with a twice times smaller primary kinetic isotope effect, (k 14/k 15)p of 1.0251 ± 0.0009, only, suggesting the nonlinear transition state structures with participation of the fourth external atom at high temperature decompositions of nitrous oxide. The nitrogen isotope effects determined in this study correlate well with nitrogen isotope fractionations observed in the natural biological, earth and atmospheric processes.  相似文献   

15.
水体氮磷高光谱遥感实验研究初探   总被引:6,自引:0,他引:6  
水体中氮、磷含量是衡量水质的主要指标,遥感技术在环境监测中具有重要意义。利用高光谱遥感技术,通过测定实验室纯水条件下配比不同浓度氮、磷溶液的反射光谱,探索水体中有效态氮、磷的特征光谱。结果表明,氮在波长404和477 nm各有一反射峰,磷在350 nm处有一明显反射峰,且与浓度有很好的相关性,并以这些特征值建立了氮、磷浓度的遥感模型,为进一步遥感定量研究湖泊、水库和河流等大型内陆水体中的氮、磷奠定了基础。  相似文献   

16.
Abstract

Interactions between ammonium and nitrate as competitive N sources depend on various biotic and abiotic factors. The preference for one of these N sources and the influence of ammonium on nitrate uptake and nitrate reductase activity was investigated in a 15N labelling experiment using 2-year-old potted plants of ash (Fraxinus excelsior L.) and oak (Quercus robur L.) under greenhouse conditions.

Seedlings of both tree species use ammonium and nitrate in equal amounts when both N forms are supplied in a 1:1 ratio (1.5 mM NH4 + + 1.5 mM NO3 ?), although there is a slight tendency that ammonium is preferred. In both species total N uptake is higher if ammonium and nitrate are supplied simultaneously when compared with uptake of nitrate alone (3 mM nitrate). If nitrate is the sole N source N uptake is only half as high as if ammonium and nitrate are supplied in a ratio of 1:1.

The distribution of nitrate reductase between shoot and roots is not influenced by the N-form: nitrate reductase activity is always highest in the roots of both species under the conditions of this experiment.

Xylem sap analyses showed that both species transport higher concentrations of amino acids than of nitrate from the roots to the shoot. The amino acid composition is independent of the type of N source. Furthermore, ash trees contain more nitrate in the xylem sap than oak trees, reflecting the higher N uptake and the higher nitrate reductase activity in the leaves of this species.  相似文献   

17.
Nine species of basidiomycota and one species of ascomycota were grown in an ammonium sulphate media and on beech wood; and the general 15N dynamic patterns of the hyphae were examined. The fungal body initially became depleted in 15N in both the types of incubation. However, the underlying mechanisms were quite different, that is, significant fungal 15N drop on the beech wood is associated with the fungal N reallocation and the uptake of atmospheric ammonia and/or NOx, in addition to isotope fractionation during assimilation. Although the 15N values of the wood-decomposing basidiocarps were generally close to the 15N values of the wood, it does not always indicate that the wood derived N was the sole N source for the fungi throughout the growth periods as shown in our wood-decomposing experiment.  相似文献   

18.
氧化锌纳米粒子(ZnO NPs)是应用非常广泛的一种多功能无机材料,主要应用于化妆品、涂料、抗菌等领域。ZnO纳米粒子的大量使用增加了与生物接触的机会,可能会对生态环境产生一定的影响。芦荟是百合科常绿多肉质草本植物,具有重要的观赏和药用价值。芦荟大黄素(Aloe-emodin, AE)是芦荟中重要的色素分子,也是芦荟作为药用植物的重要有效成分。因此,以芦荟为实验对象,利用荧光显微镜通过纵向切片的方法观察了AE在叶片中的分布,较横向切片法更为全面、清晰地揭示了AE在叶片中的分布情况。通过荧光光谱结合颜色变化研究了ZnO纳米粒子与AE的相互作用。结果表明,在黑暗条件下,ZnO纳米粒子处理后溶液颜色由淡黄色逐渐变成橙色;紫外光照射使得AE溶液颜色变化加快,在相同的作用时间内,溶液颜色变得更深,由淡黄色逐渐变成橙红色。光谱研究发现,AE的荧光光谱有四个发光峰,分别是500,540,580与630 nm,与对照组相比,ZnO纳米粒子引起芦荟大黄素540和580 nm两个荧光峰的相对强度发生变化,随着ZnO纳米粒子作用时间的增加,I540/I580比值逐渐增大。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号